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Abstract—Currently, several techniques based in digital signal
processing and artificial intelligence tools have been applied in
power transformer protection in order to detect and discriminate
internal faults from external faults. This paper presents the ap-
plication of two machine learning algorithms, the support-vector
machine and random forest, in order to distinguish between
internal and external faults. A performance comparison between
the both techniques regarding the success rate in discriminating
the events is accomplished. The results reveal the feasibility
regarding the application of these techniques in association to
the power transformer protection schemes.
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I. INTRODUCTION

Power transformers are expensive components in electrical
power systems and of high strategic importance [1], inter-
connecting the generation system to the transmission and
distribution systems and ensuring the system operation in
appropriated voltage levels. These components are subject to
failures, of which 70-80% of faults result from turn-to-turn or
internal faults, and 10% of faults in power systems take place
on power transformers. [2] In addition, the maintaining of a
faulted transformer demands an expensive financial cost due
to its high commercial cost and the imposition of fines due
to power outages [3]. Therefore, it is of utmost importance
the protection and monitoring of these equipments, providing
a fast and accurate disturbance detection and maintaining the
security and reliability of the system.

The percentage differential protection has been the main
protection for transformers with rated power above 10 MVA
[4], providing a reliable discrimination between internal and
external faults. However, this protection may fail in the pres-
ence of CT saturation and inrush currents during transformer
energization [5], causing an incorrect relay operation.

In order to overcome this limitation, many modern percent-
age transformer differential relays have incorporated additional
harmonic restraint and harmonic blocking methods [6]. How-
ever, these methods can fail for some inrush situations in which
the second harmonic content of the differential currents may
fall below 15% [7]. In addition, the conventional harmonic

restraint and blocking methods present an inherently delay
due to convergence of phasor estimation in pre- and post-fault
regimes [8].

Recently, several techniques based on artificial intelligence
and some digital signal processing tools have been developed
to discriminate efficiently internal faults from other events
in power transformer operation [8]–[17]. Among these tech-
niques, some of them have presented promising results in
power transformer fault detection and discrimination, espe-
cially those implementing wavelet transform and machine
learning algorithms [8], [13]–[17]. For instance, a power trans-
former differential protection algorithm based on the boundary
wavelet coefficient energy of the differential currents was
proposed in [8]. In [13] a multilayer perceptron neural network
was implemented in order to discriminate between internal
faults, external faults and transformer energizations. In [14],
a support-vector machine-based method for discriminating
between internal faults and other disturbances was proposed
with good results obtained even during CT saturation. Further,
a random forest algorithm with the purpose of discriminating
internal faults from other disturbances was implemented, and
good results regarding the events classification were achieved
[15]. All these techniques are able to provide a possible
way for making power transformer protection schemes more
reliable and faster.

This paper proposes the application of two machine learning
(ML) algorithms, the support-vector machine (SVM) and
random forest (RF), which were implemented to appropriately
discriminate internal faults from external faults to the trans-
former protection zone. Further on, a comparison between the
two techniques is carried out in order to evaluate which one
performs better regarding the discrimination of these events.
The input signals for the ML algorithms are the differential
wavelet coefficient energies, which were computed by means
of the real-time boundary stationary wavelet transform (RT-
BSWT), according to [17]. For training and validating the
models, several internal and external faults were simulated
with variations of fault inception angle, fault resistance, and
fault type.

Both ML-algorithms presented very significant success rates



regarding the discrimination between internal and external
faults. The presented technique can be implemented for real-
time applications and is capable of operating in conjunction
with traditional power transformer differential protection al-
gorithms.

II. MACHINE LEARNING ALGORITHMS

Machine learning is an important concept of the artificial
intelligence area. According to [18], this concept is based
on the idea that systems can learn from data, recognize
patterns and make decisions with minimal human intervention.
Tipically, the machine learning philosophy can be divided
into two important categories: the supervised learning and
unsupervised learning. With regard to a supervised learning
model, the purpose is to classify unknown data from a database
subdivided into groups according to their similarities. From
the characteristics of each group, it is possible to infer a
value judgment to the unknown data by comparing it with the
existing groups and classifying it in one of these groups [18].
This paper used two supervised ML algorithms: the support-
vector machine (SVM) and the random-forest (RF).

A. Support Vector Machine

The SVM is a supervised learning tool applied in both
classification and data regression. The purpose of the classifi-
cation is to partition two classes through an optimal separation
hyperplane, making it possible to obtain the support vectors,
which will produce a maximum margin capable of separating
these classes. The support vectors delimit the positive and
negative hyperplane sides, allowing the classification of data
as belonging to one of these classes [19].

The classification proceeds from a set of training samples
{(xi,di)} , where xi is the input pattern for the i-th term. This
data set is linearly separable if it is possible to separate the
samples into two classes, delimited by the positive and neg-
ative hyperplanes. The support vectors are the points closest
to the optimal hyperplane and, through them, it is possible
to generate a maximized separation margin, represented by ρ.
Fig 1 depicts an optimal hyperplane.
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Figure 1. Illustration of an optimal hyperplane

The representation of the optimal hyperplane is defined as
follows:

wT x + b = 0, (1)

where w is an adjustable weight vector; x is a vector containing
the input data; and b is a bias. The solution of (1) is greater
than or equal to zero for di = 1 and less than or equal to zero
for di = -1.

The desired vector length is computed from the optimal
values of the weight vector w0 and bias b0, and taking into
account the existing multiplanes. Applying this analysis in (1)
and computing the distance between the planes formed by the
support vectors, the desired algebraic distance (r) is defined
as follows:

r =
2

‖w‖
. (2)

B. Random Forest

Random Forest is an ensemble ML method which uses
several typically weak predictive models, such as decision
trees, in order to build more robust and stronger models. This
is usually achieved by injecting randomness and diversity into
the learning algorithm. Therefore, RF is a technique based on
many random-generated decision trees.

In this method, randomness can be injected by means of
one random vector θk, which is generated for the kth tree,
independently from the previous θ1,...,θk−1 random vectors.
According to [20], the parameters of the random vector
define the behaviour of the decision trees, such as split nodes
(j) thresholds and random feature selection from the input
training data vector x. Furthermore, randomness is also carried
into the algorithm by means of randomized subset sampling
from the input x, thus growing each tree with a randomly
different training subset. This strategy is commonly known
as bootstrap-aggregating (bagging). These trees grown with
different subsets of randomly selected samples and features
differ from each other, allowing an improved generalization
capability.

After growing, each tree is a classifier represented by
h(v, θk), which votes in a determined class for a given input
vector v. The class with majority of votes is the winner,
becoming the model output [21]. An example of one of these
trees is depicted in Fig. 2, as well as the split nodes j, a given
testing or validating input vector v and the selection for a
class in each of the tree’s nodes, represented by the coloured
squares.

III. PROPOSED METHOD

Fig. 3 depicts the block diagram of the proposed ML-
based transformer fault identifier, which is executed every
sampling time k. The ML-based scheme uses the operating
and restraining wavelet coefficient energy signals, as described
in [17], as inputs for properly discrimination between internal
and external faults. The functions of each block in this diagram
are addressed in the remainder of this section.
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Figure 2. Example of a kth decision tree among the k trees in the random
forest
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Figure 3. Proposed fault discrimination scheme flowchart

A. Pre-Processing (Blocks 1 - 6)

In this paper, the blocks 1-6 execute all required pre-
processing computations, as follows:

• Analog Filtering (block 1): The relay performs the digital
acquisition of the three-phase CT secondary currents, by
means of an anti-aliasing filter and an A-D converter, in
order to get the time-discrete secondary currents (iHφ and

iXφ). The variable φ corresponds to phases A, B, and C.
• RT-BWST (block 2): After the analog filtering of the CT

currents, the real-time boundary wavelet coefficients w
= {wiHφ and wiXφ} of the currents i = {iHφ and iXφ},
respectively, are computed, as described in [22].

• Phase/magnitude adjustments (block 3): The amplitude,
phase shift and zero-sequence correction is performed on
the wavelet coefficients of the currents [17].

• Differential coefficients (block 4): The differential
wavelet coefficients are given by [16]:

wiopφ(0, k) =
1

2
(w′iHφ(0, k) + w′iXφ(0, k)), (3)

wiopφ(l 6= 0, k) = w′iHφ(l, k) + w′iXφ(l, k), (4)

wiresφ(l, k) = w′iHφ(l, k)− w′iXφ(l, k), (5)

where 0 ≤ l < L and wdiff = {wiopφ , wiresφ}.
• Differential energy (block 5): The boundary wavelet

coefficient energies Ewdiff = {Ewiopφ , Ewiresφ} are computed
from the respective differential wavelet coefficients wdiff
= {wiopφ , wiresφ}, as follows [16]:

Ewdiff (k) = Ewadiff (k) + Ewbdiff (k), (6)

in which the terms Ewadiff and Ewbdiff are computed as [22]:

Ewadiff (k) =

L−1∑
l=1

w2
diff (l, k), (7)

Ewbdiff (k) =

k∑
n=k−∆k+L

w2
diff (0, n). (8)

• Event detector (block 6): Based on [8], any transient
event, such as internal and external faults, can be detected
when: {

Ewdiff (k − 1) ≤ Ediff ,
Ewdiff (k) > Ediff ,

(9)

where kd is the first sample in which both inequalities in
(9) are valid; Ediff = {Eopφ, Eresφ} are the steady-state
energy thresholds determined by [8]:

Ediff =
3

k2 − k1 + 1

k2∑
n=k1

Ewdiff (n), (10)

where [k1/fs k2/fs] is an arbitrary prior steady-sate time
range.

B. ML-based fault discrimination block (Block 7)

As soon as an event is detected, the ML-based fault dis-
criminator is enabled in order to distinguish between internal
and external faults to the transformer protection zone.

In this paper, two different ML-based fault classification
techniques were used: the RF and SVM. Both algorithms
receive as inputs the boundary differential energies Ewdiff ,
which are stored in a sliding window with the last four samples
(k − 3, k − 2, k − 1, k), and k > kd + 2. The sliding window
with length of four samples was strategically chosen in order



to limit the number of inputs of the ML-based algorithms,
providing a better convergence and a faster training of the
models [11]. Therefore, in the postfault regime, the windowing
is performed sample by sample, discarding the first sample
from the window and adding the next sample. Fig. 4 depicts
the operating and restraining wavelet coefficient energies of a
faulted signal, with their respective sliding windows as inputs
for the ML-based fault discrimination block.
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Figure 4. Differential energy sliding windows as inputs for ML models

According to Fig. 4, the ML models will have as inputs
sliding windows from the differential energy signals with 4
samples each, for both restraining and operating energies, and
for phases A, B and C. Thus, this results in 24 features as
inputs for the ML models for each training patterns.

The ML-based fault discrimination logic is essential in order
to define the type of event, whether it is a fault outside
or within the transformer protection zone. Therefore, if an
external fault is detected, the algorithm is able to send a
warning signal. Otherwise, if an internal fault is detected, a
trip signal is addressed.

C. Training and validation stages for ML-based algorithms

For training and validating the models for both ML blocks,
the dataset was divided as depicted in Fig. 5.

According to Fig. 5, the total simulated records was divided
randomly into training and validation databases. Firstly, for
each record, the 64 first post-fault sliding windows were
gathered as training and validating patterns. Afterward, the
training patterns were shuffled and partitioned into training
and test sets. These sets were used in order to train and adjust
the ML models.

After proper parameter adjustment, 10-fold cross-validation
was performed on the models in order to achieve the better
generalization capability and avoid overfitting.

IV. PERFORMANCE ASSESSMENT

Fig. 6 depicts a single-line diagram of the electrical power
system used for performance assessment of the ML models re-
garding the fault discrimination and classification. The system
was simulated by using the Alternative Transients Program
(ATP), consisting in a power transformer with their primary
and secondary windings connected to the 230 kV and 69 kV

Total Records

Training database Validation database

50% 50%

70%

Training Set Test Set

30%

Validation PatternsTraining Patterns

Sliding Windows

Validation Set

2060 2065 2070 2075 2080 2085
samples

100

O
p

er
. 

E
n

er
g

y

Operation Energy

1735

10 -2

10 0

D
iff

er
en

ti
al

 E
n
er

g
y

1740 1745 1755 1760 17651750
Samples

Sliding Windows

Figure 5. Training and Validation Flowchart

Thevenin equivalent systems, respectively. Details about the
parameterization of the system components are described in
[16].
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Figure 6. Electrical system single phase diagram

The ML models performance was assessed from the follow-
ing databases of internal and external faults, generated in ATP
simulations:
• Database 1 (external faults): AG, AB, ABG, AC, ACG

and ABC faults, on both high and low voltage sides of
the power transformer, with varying fault inception angle
θf = {0, 30, 60, 90, 120, 150, 180} electrical degrees and
fault resistance Rf = {1, 2, 3, ..., 9, 10} Ω (840 records).

• Database 2 (internal faults): AG, BG, CG, AB, ABG,
AC, ACG, BC, BCG, ABC faults, on both sides
of high and low voltage windings of the power
transformer, while varying fault inception angle θf



= {0, 30, 60, 90, 120, 150, 180} electrical degrees and
fault resistance Rf = {10, 20, 30, ..., 90, 100} Ω (1400
records).

A. Fault discriminator performance assessment

Fig. 7 depicts the confusion matrix obtained for the perfor-
mance assessment of the SVM regarding the correct recog-
nition of external and internal faults. According to Fig. 7,
the main diagonal of the matrix corresponds to the total of
cases that were correctly classified, for each class. On the
other hand, the elements outside of the main diagonal represent
the misclassified cases. For instance, a total of four internal
faults were classified as external faults. Therefore, the SVM
presented a success rate of 99.64 % for discriminating between
both events.
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Figure 7. Confusion matrix obtained from the SVM algorithm for discrimi-
nating between internal and external faults

With regard to the RF algorithm, Fig. 8 illustrates its
performance. According to Fig. 8 , none of the events was
misclassified by the RF algorithm (success rate of 100 %).
Therefore, the RF model showed greater efficiency in discrim-
inating between external and internal faults in the transformer.
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Figure 8. Confusion matrix obtained from the RF algorithm for discriminating
between internal and external faults

V. CONCLUSION

This paper presented a power transformer fault discrimi-
nation scheme based on SVM and RF algorithms. The two
techniques performed well, with both of them presenting good

results in fault discrimination. However, the RF technique has
shown a superiority in discriminating between internal and
external faults, presenting a success rate of 100 % against
99.6 %. Therefore, the RF algorithm has proven itself a more
robust, accurate and with greater generalization capability
model in discriminating faults in power transformers.

Regarding the results, they also show that with such high
success rates, both algorithms can handle more critical fault
cases classification, such as turn-to-turn faults or faults dur-
ing CT saturation, hence providing a possibility for future
investigations. Furthermore, the proposed scheme could yet
be integrated to a protection relay for further applications to
power transformers protection.
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