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Abstract — This paper presents the controller design that will 

be used in the internal loop of the maximum power point tracking 

(MPPT) algorithm to control the output voltage of a PV 

(photovoltaic) array. The PV system is intended to be connected to 

the single-phase power grid through the DC-DC Quadratic Boost 

converter at the interface between the PV panels and the DC bus. 

The proposed controller uses the state feedback technique and, in 

its design, it will be demonstrated the mathematical modeling of 

the DC-DC Quadratic Boost converter, the step-by-step 

determination of the discrete gains that feed the plant, and 

computational simulation results that show the viability of the 

control technique in question and corroborate its use. 

Keywords—Maximum Power Point Tracking, Photovoltaic 

Generation, Quadratic Boost Converter, State Feedback Control. 

I. INTRODUCTION  

The efficiency in the conversion of electrical energy in 
distributed generation systems composed by photovoltaic panels 
is limited to approximately 14 to 16% in the best conditions of 
irradiance and temperature [1]. This efficiency depends on the 
point of the IxV curve, characteristic of PV (photovoltaic) 
panels, in which the system is operating. This point of operation 
depends on the voltage and current at the output terminals of the 
PV array, and since the load fed by the photo-generated energy 
has an eminently changeable profile, it is necessary to interface 
this load with the PV array through a DC-DC converter. 

A DC-DC converter typically used in this application is the 
Boost converter in which the static gain is defined by: 
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D is the duty cycle of the converter switch, 0 < D < 1. 
However, the Boost converter has performance limitations when 
scanned in regions close to D = 1 [2]. In this context, the 
Quadratic Boost converter becomes an option to be able to raise 
voltages at higher values without considerable loss of efficiency, 
since the conversion factor of the input voltage, VIN, to the 
output voltage, VOUT, is greater than that of the Boost converter 
[3]. The static gain of the DC-DC Boost Quadratic converter is 
shown in (2). 

 
2

1

(1 )

OUT

IN

V

V D



  (2) 

Typically, this converter is used to obtain a stabilized output 
voltage, even with variations of the input voltage or load [4]. 
However, for maximum power extraction applications in 
photovoltaic arrays, the input voltage is the variable to be 
controlled, and the output voltage is considered a constant value, 
since the output of the converter will be connected in parallel to 
a fixed DC bus. Thus, the circuit is analyzed as shown in Figure 
1. 

It can be noted that the input of the converter is a resistor of 
variable resistance, RPV, that models the variations of voltage 
and current provided by the photovoltaic array, depending on the 
local irradiance and temperature. The mathematical modeling of 
this converter is necessary so that controllers can be designed for 



the variables of the internal loop (voltage Vc1 or current iPV) of 
the algorithms that aim to extract the maximum power of the PV 
array. 

 

Fig.  1. Modified Structure of the Quadratic Boost Converter for application in 

photovoltaic systems. 

In general terms, the P&O-MPPT (perturb and observe 
maximum power point tracking) algorithm used in this work 
determines, dynamically, the voltage of the photovoltaic array 
that would provide the maximum power available from the 
environmental conditions at that time. From this value, a 
controller seeks to change the duty cycle of the SW1 switch, so 
that the input voltage Vc1 of the converter is maintained at the 
reference voltage, given by the MPPT logic, at the same time 
that is boosted to the stabilized output voltage value VDC. 

Therefore, the objective of this paper is to present the 
controller design that will be used in the internal loop of the 
P&O-MPPT algorithm to control the output voltage of a 
photovoltaic array. The PV system is intended to be connected 
to the single-phase power grid and has the DC-DC Quadratic 
Boost converter at the interface between the PV panels and the 
DC bus. 

For this same DC-DC Quadratic Boost converter in this type 
of application (MPPT), in [5] a PID compensator was used, 
added to the action of a Notch filter, and in [6] a controller based 
on the internal model with a degree of freedom (IMC-1DOF), 
both designed to control the input voltage of said DC-DC 
converter. 

In this paper, the proposed controller uses the state feedback 
technique and, in its design, will be demonstrated the 
mathematical modeling of the DC-DC Quadratic Boost 
converter, the step-by-step determination of discrete gains that 
feed the plant and results of computational simulation that show 
the viability of the control technique in question and corroborate 
its use. 

II. MATHEMATICAL MODELING OF QUADRATIC BOOST 

CONVERTER  

Since Quadratic Boost converter, in continuous conduction 
mode (CCM) has two distinct operating stages - I, for switch 
SW1 conducting and II for switch SW1 blocked – it is needed to 
find the state space mathematical model of each stage and 
average them, considering the period in which each step is 
active. The mathematical model by state space consists of 
representing linear systems by two temporal equations, the 
system and the output, namely: 
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( ) ( ) ( )x t Ax t Bu t    (3) 

 ( ) ( ) ( )y t Cx t Eu t    (4) 

The chosen states are the currents in each inductor and the 

voltages in each capacitor. Thus, 
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The system input vector u(t) is the VDC voltage at the output 
of the DC-DC Quadratic Boost converter. 

A. Analysis of voltages and currents in the first stage of 

operation 

 
Fig.  2. Quadratic Boost Converter operation step 1. 

In Step 1, shown in Figure 2, the switch SW1 and the diode 
D2 conduct, and the diodes D1 and D0 are reverse polarized. The 
linear equations that describe this step are: 
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 1 1y C x E u    (7) 

From the analysis of circuits via Kirchhoff's Laws: 
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B. Analysis of voltages and currents in the second stage of 

operation 

 
Fig.  3. Quadratic Boost Converter operation step 2 



 In Step 2, shown in Figure 3, the switch SW1 and the diode 
D2 are blocked, and the diodes D1 and D0 conduct. The linear 
equations that describe this step are: 
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From the analysis of circuits via Kirchhoff's Laws: 
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The converter can be represented by matrices obtained 
through the average between the matrices of each step, 
considering the time within the conducting period in which each 
one is valid. So, 
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 Since this system is nonlinear, it is necessary to perform its 
linearization by choosing a point of operation in a steady state in 
which the derivatives of the state equations are zero. Hence, the 
system represented in the form of equation (3) can be 
represented by equation (22). 
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After some algebra in (22), considering 
.

0medX  in steady 

state, it is obtained (23): 
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Thus, the average state vector becomes (24): 
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Where 
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 Considering that the system will operate around the point of 
equilibrium, it is necessary to model the small variation 
dynamics of the system around this point, those variations in 
the duty cycle and their effects on the input voltage. In this way, 
the states, the input vector and the duty cycle are analyzed as 
containing their average value, plus a small signal of time-
varying perturbation. The model of small signals is applied to 
the state and output equations, simplifications are made and the 
Laplace transform is applied to obtain (29). 
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Where 
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 Considering that there is no variation of the input U(s) of 

the system, 
~

( ) 0U s  . Writing the transfer function of the 

variations of the states in relation to the variation of duty cycle, 
it is obtained (32): 
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Where 
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Being this system of fourth-order and one input, the 

expression (31) is a 4x1 column matrix. Desiring to control the 

disturbance of the input voltage of the converter, here 

represented by
1

~

C
v , in relation to the disturbance in the duty 

cycle
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d , the desired transfer function is 

 ~

1
~

2

2 1 0

4 3 2

4 3 2 1 0

( )
Cv

d

a s a s a
G s

b s b s b s b s b

 


   
  (34) 

Where 



 
2 2 2(1 )( )DC PVa V D R C L     (35) 

 
3

1 2(1 )DCa V D L    (36) 

 
0 2 (1 )DC PVa V D R     (37) 

 
4 1 1 2 2PVb R C LC L   (38) 

 
3 1 2 2b L L C   (39) 

 
3

2 1 1 2 2 1 2[ (1 ) ]PVb R C L C L C L D      (40) 

 
2

1 1 2(1 )b L L D     (41) 

 0 PVb R   (42) 

C. Presentation of the electrical parameters 

The inductance and capacitance values available for carrying 
out the work are such that L1 = 982 mH, L2 = 1986 mH, C1 = C2 
= 4.77 μF. The DC bus at the output of the converter is such that 
VDC = 100 V. The average duty cycle that raises the maximum 
power voltage from 61.2 V to 100 V, through (2), is D = 0.212. 
The value of RPV, being a model for the photovoltaic 
arrangement, is given by (43). 
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The photovoltaic array used provides a voltage of 62.10 V 
for a 540 W maximum power. Table 1 shows the specifications 
of each of the two panels that were connected in series, valid 
values for 1000 W/m² irradiance and 25 ° C. 

TABLE I.  ELECTRICAL PARAMETERS OF EACH PHOTOVOLTAIC PANELL 

Model Risen RSM60-6-270P 
Maximum Power 270 W 

Open-circuit voltage 37.90 V 

Open-circuit current 9.20 A 

Voltage at maximum power 31.05 V 

Current at maximum power 8.70 A 

Efficiency 16 % 

Thus, at the point of operation adopted, RPV = 7.14 Ω. The 
parameters of the voltage perturbation transfer function in the 
input capacitor of the converter relative to the disturbance in the 
switch duty cycle for the given electrical parameters are shown 
in Table II. 

TABLE II.  PARAMETERS OF THE TRANSFER FUNCTION GIVEN IN (36) 

a2 -6.498×10-6 
a1 0.09719 

a0 -1370 

b4 3.863×10-16 

b3 9.312×10-12 

b2 1.744×10-7 

b1 0.00215 

b0 8.696 

III. OPEN-LOOP SYSTEM ANALYSIS 

A mathematical software allows to obtain the system 
response to the unitary step, shown in Figure 4, where one can 
se a certain oscillation in high frequency, caused by two open-
loop complex conjugated poles that have a high imaginary part, 
in addition to the inversion of the temporal response, caused by 
two zeros in the right half-plane. In addition, the settling time 
(time required for the signal to enter the ± 2% of steady state 
value for the last time) is around 1ms. 

 

Fig.  4. Open-loop system response to unitary step. 

IV. DISCRETE INTEGRAL CONTROL WITH STATE FEEDBACK 

Figure 5 shows the discrete block diagram of the system 
consisting of integral controller + plant + state feedback. 

 

Fig.  5. Block diagram of system (integral controller, state feedback and plant). 

Discrete Integral Control consists in determining the values 
of the row-matrix K and the constant Ke such that the closed-
loop poles of the system are the ones that provide the desired 
dynamics for the output. Integral control is necessary because it 
raises the system type, zeroing the steady-state error for step 
inputs of plants that do not contain any integrators in the path of 
forward action, as it is in this case, evidenced by (36). As a 
consequence of this control, there is the increase of the order of 
the system by 1. One way to determine the K and Ke gains is by 
using the Ackermann Formula with some modifications for 
discrete systems. The step-by-step of the determination of (44) 
is shown in [7]. Equations (44) to (49) are made considering that 
the systems are represented in the controller canonical form and 
that they are of 4th order. 
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^

( )A is the closed-loop discrete characteristic equation for 

z = Â. G and H are the discrete system and input matrices, 
respectively, represented in the controller canonical form. 
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The coefficients α are given after determination of the 
closed-loop poles. The discrete representation of the closed-loop 
system is given by (50). 
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The eigenvalues of the matrix t shown in (51) are the poles 
of the closed-loop system (CL). Knowing that K1x4 gains are 
found for systems represented in the controller canonical form, 
a similarity transformation is needed to find K2, which are the 
corresponding K1x4 values that bring the current system 
represented in any other form to have the CL poles given by the 
eigenvalues of t. This is done through (52). 
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Where t is the controllability matrix of the open-loop plant 
represented in its original form and WC is the controllability 
matrix of the open-loop plant represented in the controller 
canonical form. 

The great advantage of this controller is to allow the closed-
loop poles, as long as they lead to a stable system, to be allocated 
arbitrarily. However, one does not have control over the 
saturation of the control effort. Empirically, it is known that 
when designing a control that requires controlled response with 
dynamics not much faster than the open loop one, the control 
action will not saturate. Computational simulations are 
necessary at the designing stage of performance criteria to 
ensure that the control effort is within acceptable limits. 

V. DEFINITION OF THE DESIRED PERFORMANCE OF THE 

RESPONSE AND DETERMINATION OF FEEDBACK GAINS 

The controller of this plant must be capable of stabilizing the 
input voltage of the Quadratic Boost DC-DC converter at an 

inferior time than the reference change given by the MPPT 
algorithm operating at 50 Hz, i.e., less than 20 ms. The closed-
loop settling time of 1 ms was adopted. The response adopted 
for the output had the Bessel Type dynamics, which presents 
little overshoot and adjustable settling time. Figure 6 shows the 
Bessel response for systems of order 1 to 5 with settling time of 
1 second. 

The continuous poles providing the 5th order dynamics 
shown in Figure 6 are -6.4480; -4.1104 ± j6.3142; -5.9268 ± 
j3.0813 rad/s. They should be divided by 1 ms so that the 
response will have a settling time of 1 ms. In addition, one must 
have to map them to z-plane by applying (53) to find the discrete 
characteristic closed-loop equation given by (49). The choice of 
the sampling period T must be made in accordance with the 

Nyquist's Theorem, in other words, T ≤ 2Ta, where Ta is the 

smaller period of the signal. An empirical way of choosing T is 
so that it is 6 to 10 times smaller than the settling time of the 
signal. Thus, T should be between 0.1 ms and 0.16 ms. However, 
being more conservative, a T of 0.0025 ms was chosen. 

 

Fig.  6. Bessel Type Response for 1st to 5th order systems. 
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In this way, after the due calculations, the values of the array-
line K2 and the constant Ke are obtained: K2 = [0.06777; -
0.07129; 0.002312; -0.001159] and Ke = -0.0001127. 

VI. COMPUTATIONAL SIMULATION RESULTS 

The MPPT algorithm used was the Perturb and Observe 
(P&O) algorithm. To validate the operation of the control, a 
time-varying irradiance profile was created in the range of 200 
W/m² to 1000 W/m², with a temperature of 25 °C, to be 
implemented in PV panels. Figure 7 shows the output dynamics 
compared to the reference voltage, given by the MPPT 
algorithm.  

 

Fig.  7. Comparison of the output signal with the reference. 



It is possible to note certain voltage variations at times 
multiple of 0.1 seconds, which is when steps of 200 W/m² in the 
irradiance were chosen to be made in simulation. It is worth 
mentioning that these abrupt variations of climatic conditions 
were simulated only to ascertain the effectiveness of the control 
and they are hardly repeated in practice. 

Figure 8 shows an enlargement of Figure 7 in the range of 
0.06 seconds to 0.14 seconds. In it, it can be seen that the input 
voltage dynamics meets the design criteria determined in section 
V. 

 

Fig.  8.  Amplification of Figure 7 in the time range from 0.06 seconds to 0.14 
seconds. 

Figure 9 shows the comparison of the maximum power that 
could be delivered by the photovoltaic arrangement to that 
extracted by the DC-DC converter. From it, one can see the 
efficiency of the control in extracting the maximum power 
available by the array. 

 

Fig.  9. Comparison of the maximum power available by the photovoltaic array 
to the extracted power. 

Figure 10 shows an enlargement of Figure 9 in the period of 
0.2 seconds to 0.3 seconds. The voltage reference step used in 
the MPPT algorithm in simulation was 0.5 V. Representing a 
small percentage - 0.8% - of the maximum power voltage VMPP 
- 61.2 V - it is noticed that, in steady state, there is little 
oscillation around the maximum available power at the moment. 
However, for abrupt variations of irradiance, MPP tracking is 
slower. 

 

Fig.  10. Amplification of Figure 9 in the time range of 0.2 to 0.3 seconds. 

VII. CONCLUSION 

Mathematical modeling using an average state space, 
followed by linearization around an operating point, allowed one 
to analyze the behavior of the system when subjected to 
disturbances in the switch duty cycle. This model allowed to 
identify the location of the poles and zeros in the open-loop of 
the plant, evidencing that it has its own dynamics that cannot be 
easily controlled by traditional techniques. From the 
mathematical model, a discrete integral controller was designed 
by state feedback, which allowed to allocate the closed-loop 
poles where they guarantee a desired transient response and 
which made it possible to bring to zero the steady-state error 
between the given reference voltage by the MPPT algorithm and 
the input voltage of the Quadratic Boost converter. The desired 
closed-loop poles were chosen from the standard Bessel Type 
response, which presents little overshoot and adjustable settling 
time, and the responses obtained in a computational simulation 
attest the location of these poles, thus validating the suggested 
technique of control. 
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