Algoritmo MPPT P&O com Perturbação Variável Aplicado a um Sistema de Geração PV Conectado à Rede Elétrica Trifásica

Breno D. Mendonça^{*}, Thiago de O. A. Rocha^{*}, Ricardo L. A. Ribeiro[†] e Flávio B. Costa[†] *Departamento de Engenharia Elétrica, Universidade Federal do Rio Grande do Norte - UFRN - Natal, Rio Grande do Norte, Brasil [†]Programa de Pós-Graduação em Engenharia Elétrica e de Computação - PPGEEC, Universidade Federal

do Rio Grande do Norte - UFRN - Natal, Rio Grande do Norte, Brasil Emails: b10r@ufrn.edu.br, thiago.rocha@ct.ufrn.br, rlucio@ct.ufrn.br, flaviocosta@ect.ufrn.br

Resumo-No processo de geração de energias renováveis como solar ou eólica é utilizado um mecanismo que rastreia o ponto de máxima potência (MPP) dessas gerações, o MPPT. O MPPT mais utilizados na geração PV é o perturba e observa (P&O) com perturbação fixa. Porém perturbação escolhida pode causar oscilações em torno do MPP ou deixar a atuação lenta. Com o intuito de reduzir essas oscilações e aumentar a velocidade de atuação, nesse trabalho é proposto um MPPT P&O com perturbação variável a partir da derivada da potência pela tensão. Para diminuir a influência da variáveis ambientais no desempenho do MPPT a perturbação variável é normalizada pela potência fornecida pelo sistema. O sistema PV estudado é conectado à rede trifásica através de um filtro LCL e conversão CC/CA de duplo estágio. Simulações são realizadas sob diversas condições de irradiância, temperatura e variáveis de inicialização para comprovar a eficácia do método proposto.

Palavras-chave—MPPT, P&O, Perturbações variáveis, Fotovoltaica, boost

I. INTRODUÇÃO

Devido ao aumento da demanda energética, restrições do uso de combustíveis fósseis por questões ambientais e o avanço da eletrônica de potência, um aumento das pesquisas relacionadas as fontes renováveis de energia FRE foi observado nos últimos anos [1]. Nas FRE do tipo eólica e solar fotovoltaica PV (do inglês, *Photovoltaic*), a eletrônica de potência é utilizada para condicionar a potência produzida por tais fontes, realizando uma conversão CC/CC, CC/CA ou CA/CA. Dessa forma, a eletrônica de potência permite que a energia proveniente de FRE seja entregue à rede elétrica de forma adequada.

Os sistemas renováveis de geração geralmente são conectados à rede elétrica através de sistemas de geração distribuída SGD [2]. Tais sistemas possuem a vantagem de estarem próximos dos consumidores, o que diminui as perdas características das linhas de transmissão que ocorre quando a geração convencional concentrada é utilizada. No contexto atual, os SGD podem ser inseridos no sistema elétrico através de microrredes. As microrredes são redes elétricas de escala reduzida, que podem operar de forma ilhada ou conectada à rede elétrica principal [3]. Para que os SGD operem adequadamente no contexto de microrredes é necessário que seja realizado o controle de tais sistemas de forma eficiente. Na geração eólica e solar, além do controle das correntes fornecidas e do controle da tensão do barramento CC, é necessária a utilização de algoritmos MPPT (do inglês, Maximum Power Point Tracking) que busquem o ponto da máxima potência MPP (do inglês, Maximum Power Point) para que a máxima potência disponível possa ser entregue à rede elétrica [4]. Na geração PV, o fornecimento de energia elétrica para a rede é diretamente afetado quando ocorrem variações de irradiância ou de temperatura, onde a máxima potência disponível é alterada e dessa forma o algoritmo MPPT tem a responsabilidade de forçar com que o sistema volte a operar no ponto de máxima potência. Os módulos PV possuem apenas um ponto de operação MPP, de corrente e tensão, que permite que seja extraído a máxima potência que ele pode fornecer a uma determinada temperatura e nível de irradiância [5]. O uso da eletrônica de potência permite que seja extraída a máxima potência dos módulos PV.

Geralmente, a conversão CC/CA dos sistemas PV conectados à rede elétrica pode ser realizada com 1 ou 2 estágios [6]. O algoritmo do MPPT pode ser implementado a partir da análise de diferentes variáveis. Porém, de forma geral o MPPT é responsável por controlar a tensão terminal do painel PV. Quando a topologia de 1 estágio é utilizada, o MPPT modifica a tensão de referência do barramento CC do conversor VSI (do inglês, Voltage Source Inverter) e após um determinado tempo a potência fornecida pelo painel é analisada. Dependendo da variação da potência uma elevação ou redução da tensão do barramento CC pode ser realizada. Quando a conversão é realizada em 2 estágios, a tensão do barramento CC é fixada e um conversor CC/CC, geralmente do tipo boost é utilizado. A tensão terminal no painel PV é alterada a partir da modificação da relação cíclica do conversor boost. O algoritmo MPPT altera o valor da relação cíclica e verifica se há um aumento ou redução da potência fornecida [7].

Nos últimos anos várias estratégias de MPPT têm sido propostas. Alguns necessitam de informações prévias sobre o painel PV e outros conseguem obter o MPP mesmo sem conhecer previamente características técnicas do painel. Dos métodos que utilizam dados técnicos do painel, se destacam o método da tensão constante [8], [9], método da corrente constante [8], ajuste de curva PxV a partir de informações de irradiância e temperatura sobre o módulo [10], *look up table*, que mapeia pontos de MPP para diversas situações [10]–[12], inteligência artificial, com período de treinamento dos neurônios [13] e varredura de corrente [10], [12]. Dos métodos que não necessitam do conhecimento de características técnicas do painel se destacam o método perturba e observa (P&O) que, a partir da observação da potência gerada, define incrementos ou decrementos da tensão do painel PV [10], [14]–[17] e indutância incremental [12], [18], [19].

O algoritmo P&O se destaca, pois não necessita de um base de dados, treinamento ou estudo acerca da temperatura e irradiância do local. Isso garante mais versatilidade a esse algoritmo, com aplicação direta no sistema, sem necessidade de informações prévias ou de sensores de temperatura e irradiância, permitindo uma implementação mais barata quando comparado a outros métodos. Por sua versatilidade e fácil aplicação, várias modificações são propostas para o P&O, como por exemplo o hill climbing [20], [21] e P&O adaptativo [10], [14]-[17]. No método P&O tradicional, de perturbação fixa, o sistema é perturbado e a potência entregue pelo painel é analisada. O problema de tal técnica é a definição da perturbação, pois altos valores de perturbação fazem com que o sistema obtenha o MPP mais rapidamente, mas por outro lado oscilações em torno da potência no MPP são observadas. Quando a perturbação possui baixos valores, as oscilações em torno do ponto de máxima potência são reduzidas mas o MPP é alcançado de forma lenta.

Nesse sentido, nesse trabalho é proposto um algoritmo MPPT P&O com perturbação variável, onde o MPP é alcançado mais rapidamente e as oscilações em torno da máxima potência são reduzidas quando comparado ao P&O tradicional. A perturbação variável é definida a partir da análise da derivada da potência em relação a tensão do painel PV. Para diminuir a influência da variação da irradiância e temperatura no desempenho do MPPT a perturbação variável é normalizada pela potência fornecida pelo sistema. O MPPT proposto é aplicado à um sistema de geração distribuída PV de 2 estágios compostos pelo conversor *boost* e um VSI conectados à rede elétrica através de um filtro LCL.

II. DESCRIÇÃO DO SISTEMA

O diagrama de blocos do sistema PV conectado à rede elétrica trifásica estudado no artigo é apresentado na Figura 1. O sistema é composto por um painel PV de 8kWp e a conexão do painel ao barramento CC do VSI é realizado por meio de um conversor elevador do tipo *boost*. O painel é composto por 32 módulos PV, compostos por 4 *strings* em paralelo. Cada *string* é composto por 8 módulos em série. O barramento CC é composto pelo capacitor C_{bar} , a resistência série r_{ext} e a resistência paralela R_{bar} . Um conversor VSI é utilizado para realizar a conversão CC/CA e um filtro de conexão do tipo LCL é usado na conexão do VSI com a rede elétrica. O filtro LCL possui as indutâncias L_i e L_g e a capacitância C_f . R_i e R_g são as resistências intrínsecas das indutâncias L_i e L_g , respectivamente. O conversor *boost* possui a indutância L_{boost} . A rede elétrica é modelada pelo seu circuito equivalente de Thévenin, composto por um fonte de tensão ideal v_{g123} em série com a impedância Z_s , composta pela associação série da indutância L_s e a resistência R_s . O resistor de amortecimento r_d é usado em série com C_f para atenuar o pico de ressonância do filtro LCL. As correntes i_{g123} são as correntes fornecidas pelo LCL e v_{pac123} são as tensões do ponto de acoplamento comum PAC. i_{inv123} são as correntes fornecidas pelo VSI e v_{inv123} são suas respectivas tensões. A tensão v_{bar} é a tensão sobre o barramento CC e a tensão v_{pv} é a tensão fornecida pelo painel PV.

Na Tabela I são apresentados os parâmetros do módulo YL245P-29b, utilizado como base para o trabalho, e também são apresentados os dados do painel PV, composto por 32 módulos YL245P-29b. O painel PV possui potência próxima de 8kWp.

Tabela I Dados do módulo e do painel utilizados no trabalho.

Propriedades	I _{cc}	V _{ca}	I _{mpp}	V _{mpp}
	(A)	(V)	(A)	(V)
Módulo YL245P-29b	8,83	37,5	8,28	29,6
Painel	35,32	300,0	33,12	236,8

Na Tabela II são apresentados os parâmetros físicos do sistema estudado.

Tabela II PARÂMETROS DO SISTEMA.

Parâmetro	Símbolo	Valor	Unidade
Tensão de fase (RMS)	V_{g}	127	V
Tensão do barramento	$v_{\rm bar}$	500	V
Frequência da rede elétrica	f_s	60	Hz
Frequência de chaveamento	$f_{\rm ch}$	10k	Hz
Indutância do conversor boost	L_{boost}	5m	Н
Capacitância do barramento CC	C_{bar}	4,7m	F
Resistência série do barramento CC	$r_{\rm ext}$	50m	Ω
Resistência paralela do barramento CC	$R_{\rm bar}$	700	Ω
Capacitância do LCL	C_{f}	15μ	F
Indutância do LCL	L_i	1m	Н
Indutância do LCL	L_q	500μ	Н
Resistência intrínseca	$\vec{R_i}$	0,032	Ω
Resistência intrínseca	R_{g}	0,021	Ω
Resistência da rede	R_s	0,41	Ω
Indutância da rede	L_s	400μ	Н

III. SISTEMA DE CONTROLE

O sistema de controle utilizado nesse trabalho se divide basicamente em quatro partes, que são: i) controle das correntes fornecidas pelo LCL à rede elétrica i_{gdq}^e no referencial síncrono [22], onde são usados controladores do tipo PI (proporcional integral) com ganhos k_{pi} e k_{ii} , ii) controle da tensão do barramento CC v_{bar} [23], onde também é usado um controlador do tipo PI com ganhos k_{pv} e k_{iv} , iii) sistema de sincronização, com a utilização de um SRF-PLL (do inglês, *Synchronous Reference Frame - Phase Locked Loop*)

Figura 1. Diagrama de blocos do sistema PV conectado à rede integrado com a estratégia de controle.

[24] que identifica o argumento do vetor tensão da rede θ usado nas transformação de referencial e iv) algoritmo MPPT proposto. O controlador PI do barramento CC gera a corrente de referência i_{qd}^{e*} para o controle de corrente. Tal corrente é multiplicada por -1 devido ao fato que o sistema é controlado no modo gerador. A corrente i_{gq}^{e*} é definida como zero para que o sistema não forneça potência reativa [23]. As devidas perturbações são consideradas para o controle de corrente e dessa forma, as tensões do VSI v^e_{invdq} são obtidas. Um bloco $x_{dq}^e/123$ é usado para transformar tais tensões para o referencial natural. Um modulador PWM envia os gatilhos $S_1 \sim S_6$ para o VSI. O projeto dos controladores PI usados no controle de corrente, da tensão do barramento e do SRF-PLL foram dimensionados utilizando o método de posicionamento de polos. Diferentemente de métodos tradicionais, onde a potência fornecida pelo painel PV é medida para se realizar a implementação do MPPT, nesse trabalho o MPPT proposto analisa a potência fornecida pelo VSI à rede elétrica pela análise da corrente $i^e_{gd},$ já que $P=i^e_{gd}v^e_{\rm pacd}$ e a tensão $v^e_{\rm pacd}$ é praticamente constante. O algoritmo MPPT define a relação cíclica D do conversor *boost* e dessa forma o gatilho S_b é enviado ao conversor.

A. Algoritmo MPPT

Um MPPT P&O tradicional possui a perturbação ΔD fixa, que é aplicada ao sistema de acordo com a Tabela III, com o objetivo de o que MPP seja alcançado.

Inicialmente o sistema é perturbado com inserção de ΔD . Após um certo tempo a potência fornecida pelo painel PV é analisada. Caso após a inserção da perturbação a potência aumente, o sentido da modificação de D permanece o mesmo, caso a potência seja reduzida, o sentido é invertido. A definição errada de ΔD pode gerar oscilações ou fazer com que o

Tabela III Inserção da perturbação de um P&O tradicional

	$P\uparrow$	$P\downarrow$
$\begin{array}{c} D\uparrow\\ D\downarrow\end{array}$	$\begin{array}{l} D = D + \Delta D \\ D = D - \Delta D \end{array}$	$\begin{aligned} D &= D - \Delta D \\ D &= D + \Delta D \end{aligned}$

MPP seja alcançado de forma lenta. O correto sentido da perturbação pode ser obtido quando derivamos P por D. De fato, a derivada positiva indica necessidade de incremento do D e negativa o seu decremento. Além disso, o uso da derivada possibilita uma quantidade infinita de valores possíveis para D dentro dos limites do *boost*. Na Figura 2 é apresentado o gráfico de $\frac{dP}{dD}$ para o painel PV utilizado nesse trabalho.

Figura 2. Curva da derivada $\frac{dP}{dD}$ do painel PV.

Analisando a Figura 2 é possível observar que para valores entre 0,5 e 0,55 de D o módulo da derivada $\frac{dP}{dD}$ é baixo quando comparado para valores fora desse range. Como o módulo da derivada é alterado com a modificação da irradiância ou da temperatura, a derivada é normalizada pela potência instantânea P. Tal normalização permite que a perturbação ΔD se adéque a modificações do ponto de operação do sistema, além de permitir que um ajuste fino do valor de $\frac{dP}{dD}$ seja realizado.

Na Figura 3 é apresentado o diagrama de funcionamento do MPPT proposto, no qual k é uma constante, D_{ant} e P_{ant} são os valores de D e P da iteração anterior.

Figura 3. Diagrama do Funcionamento do MPPT proposto com perturbação variável.

Na fase de inicialização, os valores de D, D_{ant} e P_{ant} devem ser escolhidos previamente e determinam, juntamente com o P medido, a direção e a magnitude da derivada na primeira interação, enquanto que a constante k determina a sensibilidade da derivada para o cálculo da perturbação de todas as iterações. A fase de atualização determina o início do *loop*. Na fase P = in[0], P é medido para utilização na iteração atual. P é calculado usando a relação $P = i_{qd}^e v_{pacd}^e$. Dessa forma, diferentemente dos métodos tradicionais que analisam diretamente a potência fornecida pelo painel PV, nesse trabalho a potência fornecida pelo LCL é analisada para que sensores adicionais, além dos necessários para a estrutura de controle, não sejam necessários. Na fase do cálculo da derivada $\frac{dP}{dD}$ é realizado o cálculo da derivada normalizada que é calculada de acordo com a variação de P e D. Na fase de preparação para a próxima interação, os valores de D_{ant} e P_{ant} são atualizados com valores de D e P da iteração atual para serem utilizados na iteração seguinte. Então, na última fase do *loop*, um novo D é calculado a partir do valor atual da derivada e da constante de sensibilidade. Este novo D é utilizado até a próxima iteração. Além do que está exposto na Figura 3, o valor de D é limitado para que o conversor boost opere sempre no seu modo de condição contínua.

IV. RESULTADOS DA SIMULAÇÃO

Para obter os resultados de simulação o sistema apresentado na Figura 1 foi simulado no *software* PSIM. Os parâmetros usadas na simulação são apresentados na Tabela II. Para evitar incorretas interações, o algoritmo MPPT só é iniciado no sistema após 1 s. As perturbações são inseridas a cada 0,3 s para que o sistema possa entrar em regime permanente antes da próxima interação e para que a análise de P não seja errônea. Além disso, foi definido passos máximos de $\Delta D = 0, 1$, uma saturação de 0, 2 < D < 2/3 e constante de k = 0,01. Assim, o comportamento do MPPT proposto para diferentes D de partida D_{partida} é apresentado na Figura 4.

Figura 4. Curvas de $D \in P$ do sistema PV para diferentes D_{partida} .

Na Figura 4 é possível notar que a perturbação ΔD inserida é superior quando o D_{partida} é distante do D de máxima potência D_{MPP} . Quando o D_{partida} é de 0,6, próximo ao $D_{\text{MPP}} = 0,52$, os valores de ΔD são inferiores quando comparado aos outros valores D_{partida} . Esse comportamento se deve aos grandes valores da derivada $\frac{dP}{dD}$ à esquerda do MPP, como pode ser observado na Figura 2. A limitação imposta ao $\Delta D = 0, 1$ foi satisfatória para que a potência P não sofresse grandes oscilações. Na Figura 5 é apresentado a potência P fornecida pelo sistema e a relação cíclica do conversor *boost* para diferentes irradiâncias com $D_{\text{partida}} = 0, 6$.

Na Figura 5 é possível observar que, assim como previsto na idealização do MPPT, o ΔD não depende da irradiância devido à normalização utilizada. Outra análise a ser feita é que o tempo de convergência depende da distância e da posição inicial em relação ao MPP. No resultado com $200W/m^2$ é possível observar que a primeira perturbação ΔD se distanciou bastante do MPP. Também é possível notar que a curva de $500W/m^2$ se deslocou do MPP temporariamente. O motivo dessa oscilação é devido a micro-variações na potência causada pelo chaveamento do VSI e do *boost* que geram um ΔP suficientemente grande para sensibilizar a derivada $\frac{dP}{dV}$. Porém isso pode ser ajustado com a utilização de uma zona morta, onde valores baixos de ΔP são igualados a zero. Na Figura 6 é possível verificar a potência P e o relação cíclica D para vários valores de temperatura.

Na Figura 6 pode-se notar que pontos distintos de D_{MPP} podem ser observados. Isto se deve ao fato da temperatura

Figura 5. Curvas de D e P do sistema PV para diferentes níveis de irradiância.

Figura 6. Curvas de D e P do sistema PV para diferentes temperaturas.

ter forte influência na tensão de circuito aberto e na tensão de máxima potência do painel PV. Como a variação da temperatura foi de 25° até 70° o D_{MPP} variou de 0,52 até 0,62, respectivamente. A fim de comparação, na Figura 7 é possível visualizar o comportamento de um P&O de perturbações fixas neste mesmo sistema.

A partir da Figura 7, nota-se que perturbações menores possuem oscilações pequenas em torno do MPP com tempo de convergência mais elevado, cerca de 7 segundos para $\Delta D = 0,01$. Ademais, o aumento desta perturbação causa aumento das oscilações em torno do MPP, apesar de abaixar o tempo de convergência, cerca de 2 a 3 segundos. Entretanto, reanalisando as Figuras 4, 5 e 6, verifica-se que o tempo de convergência para o MPP possui uma faixa entre 2 a 3 segundos com oscilações de potência bem reduzidas em torno do MPP devido à diminuição das perturbações aplicadas.

Figura 7. Curvas de D e P do sistema PV utilizando P&O de perturbação fixa com diferentes valores de ΔD

V. CONCLUSÃO

Nesse trabalho foi proposto um MPPT P&O com perturbação variável aplicado a um sistema PV de duplo estagio conectado à rede elétrica trifásica através de um filtro LCL. A perturbação variável é definida utilizado como base a derivada $\frac{dP}{dV}$ e a potência ativa fornecida para que o MPPT possa ser menos susceptível a variações de irradiância e temperatura, possuir menores oscilações de potência no MPP e que o MPP possa ser alcançado rapidamente. A implementação do MPPT não utiliza sensores adicionais além dos sensores utilizados pela estrutura de controle. A medição da variável P pode ser facilmente obtida com a medição das variáveis do sistema de controle. O MPPT proposto foi analisado sob a influência de diferentes valores de D_{partida} e pode ser observado que quanto mais distante D_{partida} está do D_{MPP} maiores foram os valores da perturbação definida, acelerando a obtenção do MPP. A atuação do MPPT também foi analisada sob várias temperaturas e níveis de irradiância e o mesmo obteve bom desempenho para todos os casos. Deste modo, o MPPT proposto alcançou o MPP rapidamente, de forma precisa e sem adição de custos os sistema PV. Para atenuar possíveis oscilações de potência em regime permanente, uma zona morta pode ser utilizada na definição de ΔP durante o cálculo da derivada.

REFERÊNCIAS

- T. Q. Fonsêca, R. L. A. Ribeiro, F. B. Costa, T. O. A. Rocha e E. S. Dantas, "Controle do Fluxo de Potência de Sistemas Fotovoltaicos Utilizando a Técnica de Impedância Virtual", XXII Congresso Brasileiro de Automática, 2018.
- [2] Y. Wu, J. Lin e H. Lin, "Standards and Guidelines for Grid-Connected Photovoltaic Generation Systems: A Review and Comparison", *IEEE Transactions on Industry Applications*, vol. 53, n.^o 4, pp. 3205–3216, jul. de 2017, ISSN: 0093-9994. DOI: 10.1109/TIA.2017. 2680409.

- J. Rocabert, A. Luna, F. Blaabjerg e P. Rodríguez, "Control of Power Converters in AC Microgrids", *IEEE Transactions on Power Electronics*, vol. 27, n.º 11, pp. 4734–4749, nov. de 2012, ISSN: 0885-8993. DOI: 10.1109/TPEL.2012.2199334.
- [4] F. Blaabjerg, Zhe Chen e S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems", *IEEE Transactions on Power Electronics*, vol. 19, n.º 5, pp. 1184–1194, set. de 2004, ISSN: 0885-8993. DOI: 10.1109/TPEL.2004.833453.
- [5] H. Renaudineau, F. Donatantonio, J. Fontchastagner, G. Petrone, G. Spagnuolo, J. Martin e S. Pierfederici, "A PSO-Based Global MPPT Technique for Distributed PV Power Generation", *IEEE Transactions on Industrial Electronics*, vol. 62, n.º 2, pp. 1047–1058, fev. de 2015, ISSN: 0278-0046. DOI: 10.1109/TIE.2014.2336600.
- [6] W. Li e X. He, "Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications", *IEEE Transactions on Industrial Electronics*, vol. 58, n.º 4, pp. 1239–1250, abr. de 2011, ISSN: 0278-0046. DOI: 10.1109/TIE.2010.2049715.
- [7] T. d. O. A. Rocha, "Contribuições para estratégia de controle aplicada à geração fotovoltaica interconectada à rede elétrica", tese de dout., 2015.
- [8] Z. Ye e X. Wu, "Compensation loop design of a photovoltaic system based on constant voltage MPPT", em 2009 Asia-Pacific Power and Energy Engineering Conference, IEEE, 2009, pp. 1–4.
- [9] A. W. Leedy, L. Guo e K. A. Aganah, "A constant voltage MPPT method for a solar powered boost converter with DC motor load", em 2012 Proceedings of IEEE Southeastcon, IEEE, 2012, pp. 1–6.
- [10] D. Verma, S. Nema, A. Shandilya e S. K. Dash, "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems", *Renewable and Sustainable Energy Reviews*, vol. 54, pp. 1018–1034, 2016.
- [11] K. Kulikowski e A. Sikorski, "New DPC look-up table methods for three-level AC/DC converter", *IEEE Transactions on Industrial Electronics*, vol. 63, n.º 12, pp. 7930–7938, 2016.
- [12] B. Subudhi e R. Pradhan, "A comparative study on maximum power point tracking techniques for photovoltaic power systems", *IEEE Transactions on sustainable energy*, vol. 4, n.º 1, pp. 89–98, 2012.
- [13] J. P. Ram, T. S. Babu e N. Rajasekar, "A comprehensive review on solar PV maximum power point tracking techniques", *Renewable and Sustainable Energy Reviews*, vol. 67, pp. 826–847, 2017.
- [14] J. Ahmed e Z. Salam, "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency", *Applied Energy*, vol. 150, pp. 97–108, 2015.
- [15] Y. Yang e F. P. Zhao, "Adaptive perturb and observe MPPT technique for grid-connected photovoltaic in-

verters", *Procedia Engineering*, vol. 23, pp. 468–473, 2011.

- [16] F. Liu, S. Duan, F. Liu, B. Liu e Y. Kang, "A variable step size INC MPPT method for PV systems", *IEEE Transactions on industrial electronics*, vol. 55, n.º 7, pp. 2622–2628, 2008.
- [17] N. Femia, G. Petrone, G. Spagnuolo e M. Vitelli, "Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems (Industrial Electronics)", em *Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems*, 1st Edition. CRC Press, 2012, pp. 62–68, ISBN: 978-1466506909.
- [18] N. E. Zakzouk, M. A. Elsaharty, A. K. Abdelsalam, A. A. Helal e B. W. Williams, "Improved performance low-cost incremental conductance PV MPPT technique", *IET Renewable Power Generation*, vol. 10, n.º 4, pp. 561–574, 2016.
- [19] R. I. Putri, S. Wibowo e M. Rifa'i, "Maximum power point tracking for photovoltaic using incremental conductance method", *Energy Procedia*, vol. 68, pp. 22–30, 2015.
- [20] W. Zhu, L. Shang, P. Li e H. Guo, "Modified hill climbing MPPT algorithm with reduced steady-state oscillation and improved tracking efficiency", *The Journal* of Engineering, vol. 2018, n.º 17, pp. 1878–1883, 2018.
- [21] M. I. Bahari, P. Tarassodi, Y. M. Naeini, A. K. Khalilabad e P. Shirazi, "Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application", em 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), IEEE, 2016, pp. 1041–1044.
- [22] Y. I. Ribeiro Damasceno, R. L. de Araújo Ribeiro, T. de Oliveira Alves Rocha e S. de Cavalcante Paiva, "A Control Strategy With Seamless Mode Transition for a Low-voltage Distributed Generation System Without an Energy Storage System", em 2018 Workshop on Communication Networks and Power Systems (WCNPS), nov. de 2018, pp. 1–6. DOI: 10.1109/WCNPS.2018. 8604383.
- [23] R. L. d. A. Ribeiro, T. d. O. A. Rocha, R. M. de Sousa, E. C. dos Santos e A. M. N. Lima, "A Robust DC-Link Voltage Control Strategy to Enhance the Performance of Shunt Active Power Filters Without Harmonic Detection Schemes", *IEEE Transactions on Industrial Electronics*, vol. 62, n.º 2, pp. 803–813, fev. de 2015, ISSN: 0278-0046. DOI: 10.1109/TIE.2014.2345329.
- [24] P. S. B. Nascimento, H. E. P. de Souza, F. A. S. Neves e L. R. Limongi, "FPGA Implementation of the Generalized Delayed Signal Cancelation—Phase Locked Loop Method for Detecting Harmonic Sequence Components in Three-Phase Signals", *IEEE Transactions* on Industrial Electronics, vol. 60, n.º 2, pp. 645–658, fev. de 2013, ISSN: 0278-0046. DOI: 10.1109/TIE.2012. 2206350.