Análise, Modelagem e Controle de um Conversor cc-cc com Bipolaridade da Fonte

Gerson Emerson da Cruz Gomes Departamento de Engenharia Elétrica - UFPI Teresina, Piauí Email:gersongomes.c@hotmail.com

Rafael Rocha Matias Departamento de Engenharia Elétrica - UFPI Teresina, Piauí Email: rafaelrocha@ufpi.edu.br

Resumo—O conversor *cc-cc boost* abordado apresenta um circuito de ressonância, fenômeno presente em circuitos compostos por indutores e capacitores, entregando na sua saída uma tensão *cc* regulada positiva, independente da polaridade na fonte de entrada. Com isso, determinou-se o seu comportamento dinâmico a partir do emprego da técnica do modelo médio em variáveis de estado, realizando a modelagem do circuito do conversor por meio de pequenas pertubações aplicadas no ciclo de trabalho. Estas geram respostas nas variáveis de saída, o que possibilita a obtenção da função de transferência da tensão de saída pela razão cíclica. Os resultados das simulações foram avaliados e validaram a eficácia do conversor na operação com entrada positiva e negativa, os limites do modo de condução contínua e a eficiência do controlador proposto.

Keywords – Conversor estático de potência, Conversão *cc-cc*, Modelagem, Variáveis de estado, Amplificador de erro compensado.

I. INTRODUÇÃO

Os conversores *cc-cc*, que transferem potência entre fonte e carga em tensão constante, apresentam diversas aplicações, como em aquecedores, refrigeradores, máquinas elétricas, fontes de alimentação e veículos automotores [1], entre outros produtos de alta potência. Além disso, são muito utilizados para isolamento, adaptação e regulação de tensão e corrente [2]. A presença de conversores *cc-cc* é extremamente necessária em situações onde se deseja o controle preciso das variáveis elétricas e do fluxo de potência entre dois sistemas [3].

Dentre as topologias de conversores de potência, tem-se a do conversor *boost*, esta que é aplicada a sistemas que necessitam de elevação de tensão. O trabalho proposto em [4] aborda o desenvolvimento de um conversor *cc-cc* com alto ganho de tensão para aplicação em sistemas fotovoltaicos. Em [5] são pautadas metodologias de projetos otimizados para conversores da família *boost* aplicados à celula a combustível.

A busca por novos conversores que apresentem características favoráveis de operação é algo crucial para o desenvolvimento de novos dispositivos no ramo da eletrônica de potência. Nesse sentido, o aprimoramento de conversores estáticos de Amanda Thayla Silva Monteiro Departamento de Engenharia Elétrica - UFPI Teresina, Piauí Email:amathayla@hotmail.com

Jose Antonio dos Santos Neto Departamento de Engenharia Elétrica - UFPI Teresina, Piauí Email: nsantos93@hotmail.com

potência, tanto no que diz respeito a sua eficiência como a sua facilidade de atuação, tornou-se muito importante para a melhoria do funcionamento e da eficácia dos equipamentos conectados aos Sistemas Elétricos de Potência (SEPs).

Na literatura há diversos trabalhos que visam o estudo tanto da operação de conversores *cc-cc* como da implementação dos mesmos, levando em consideração aspectos de modelagem e controle. Muito desses trabalhos são fundamentados de acordo com [6], que introduziu os conceitos sobre análise, modelagem e *design* de conversores *cc-cc* e estabeleceu referências que são adotadas até os dias atuais. Suas contribuições vão desde a implementação de novos conversores à aplicação do modelo médio em variáveis de estados, muito útil para obtenção do comportamento dos dispositivos no domínio da frequência.

A partir da topologia apresentada em [7], analisou-se o conversor que trabalha com tensões de entrada positiva e negativa conforme ilustrado na Fig. 1. Esta topologia possui um indutor de entrada seguido de uma malha de ressonância e entrega na sua saída uma tensão positiva independentemente da polaridade da fonte de entrada.

Figura 1: Configuração do conversor cc-cc de saída positiva

Por atuar da mesma forma para ambas as polaridades da fonte, tem uma vasta aplicabilidade, principalmente em situações onde não se tem preocupação com a polarização da fonte de alimentação. Embora se utilize indutor e capacitor ressonantes, a tensão de saída dependerá apenas do valor do ciclo de trabalho adotado. Assim, o objetivo principal deste artigo é realizar a modelagem e o controle de um conversor estático de potência com bipolaridade da fonte e verificar o seu ganho textitcc. Com isso na seção seguinte é realizada a modelagem do conversor, e obtidos a funçao de transferência da planta, e o seu ganho estático. Em seguida, são expostos os resultados das simulações com a aplicação do controle, que validarão a metodologia proposta do conversor com bipolaridade da fonte.

II. MODELAGEM DO CONVERSOR

Para serem úteis nas mais diversas aplicações, os conversores estáticos de energia elétrica devem ter suas variáveis elétricas devidamente controladas. A escolha adequada dos controladores e seus parâmetros, o projetista do conversor deve conhecer a função de transferência do modelo, obtida a partir de equações diferenciais lineares, resultantes da linearização de equações não lineares em torno de pontos de operação específicos, nos quais o conversor deverá operar [8].

A Figura 2 ilustra o conversor *cc-cc* com tensão de entrada positiva nos intervalos (0, DT), Fig. 2a, e (DT, T), Fig. 2b. Inicialmente a chave está fechada e a corrente do circuito ressonante (i_r) é diferente da do indutor principal. Em seguida a chave é aberta, e os componentes são percorridos pela mesma corrente (i_L) .

Considera-se o caso em que o conversor esteja operando em condução contínua e frequência de chaveamento constante. Além disso, para simplificações matemáticas, serão desprezadas as resistências parasitas dos componentes como chaves, indutores e capacitores.

Figura 2: Estados topológicos do conversor nos intervalos (a) (0, DT) e (b) (DT, T).

As variáveis de estado desse sistema serão a corrente no indutor principal (i_L) e a tensão no capacitor de saída (V_C) , considerando uma resistência nula nos mesmos, a tensão de saída do conversor corresponde a do capacitor $(V_C = V_o)$. Durante o intervalo (0, DT), período de magnetização, a tensão no indutor $(v_L = L\frac{di_L}{dt})$ é equivalente da fonte (V_g) , assim a corrente no capacitor $(i_C = C\frac{dV_C}{dt})$ terá valor igual à corrente da carga $(i_o = \frac{V_C}{R})$, porém com sentido inverso. Expressando esses valores em função da derivada das variáveis de estado, tem-se (1) e (2):

$$L\frac{di_L}{dt} = V_g \tag{1}$$

$$C\frac{dV_C}{dt} = -\frac{V_C}{R} \tag{2}$$

No intervalo de desmagnetização (DT, T), o indutor principal está em série com a fonte, o circuito ressonante e a carga. Dessa forma, a tensão no indutor é obtida pela Lei da Tensões de Kirchhoff, em que $V_{cr} = 0$, e a corrente no capacitor será a diferença entre a do indutor e a da carga. Expressando esses valores em função da derivada das variáveis de estado, obtêmse (3) e (4):

$$L\frac{di_L}{dt} = V_g - V_C \tag{3}$$

$$C\frac{dV_C}{dt} = i_L - \frac{V_C}{R} \tag{4}$$

As Equações (1), (2), (3) e (4) descrevem o comportamento das variáveis de estado desse sistema separadamente nos intervalos (0, DT) e (DT, T). No entanto, para se obter um modelo matemático para análise de suas características dinâmicas, necessita-se de equações que descrevam o comportamento geral do sistema e englobem ambos os intervalos.

A. Aplicação da técnica do valor médio

A técnica do valor médio é bastante útil quando se deseja a linearização de sistemas para encontrar de forma precisa o comportamento de suas variáveis de estado, considerando a operação do conversor em dois estágios definidos nos intervalos (0, DT) e (DT, T). Após isso, calcula-se o valor médio a partir da soma entre as equações, que descrevem as características das variáveis, multiplicadas por seus respectivos intervalos.

Primeiramente, multiplica-se as Equações (1) e (2) pelo ciclo de trabalho (D), pois ambas acontecem no intervalo (0, DT). Dessa forma, tem-se (5) e (6):

$$DL\frac{di_L}{dt} = DV_g \tag{5}$$

$$DC\frac{dV_C}{dt} = -D\frac{V_C}{R} \tag{6}$$

Em seguida, multiplica-se as Equações (3) e (4) por (1-D), já que elas acontecem no intervalo (DT, T). Vide (7) e (8):

$$(1-D)L\frac{di_L}{dt} = (1-D)V_g - (1-D)V_C$$
(7)

$$(1-D)C\frac{dV_C}{dt} = (1-D)i_L - (1-D)\frac{V_C}{R}$$
(8)

Então, somam-se as Equações (5) com (7) e (6) com (8), resultando nas Equações (9) e (10), que expressam os valores médios das variáveis do conversor em um período de operação T.

$$L\frac{di_L}{dt} = V_g - (1-D)V_C \tag{9}$$

$$C\frac{dV_C}{dt} = (1-D)i_L - \frac{V_C}{R}$$
(10)

B. Função de transferência do conversor para controle de tensão da carga

A partir das equações desenvolvidas deseja-se obter uma função de transferência que relacione a variação da tensão no capacitor com a variação no ciclo de trabalho, como apresentado na Equação (11).

$$F(s) = \frac{\Delta V_C(s)}{\Delta D(s)} \tag{11}$$

Primeiramente, será introduzida uma pequena pertubação no ciclo de trabalho D, vide (12), que provocará como resposta pertubações na corrente do indutor e na tensão do capacitor conforme equações (13) e (14).

$$D = D_o + \Delta D \tag{12}$$

$$i_L = i_{L_a} + \Delta i_L \tag{13}$$

$$V_C = V_{C_o} + \Delta V_C \tag{14}$$

Aplicando esses novos valores do ciclo de trabalho, da corrente e da tensão nas Equações (9) e (10), e logo em seguida empregar a transformada de Laplace, obtém-se a função de transferência do conversor estudado, de acordo com a Equação (15).

$$\frac{\Delta V_C(s)}{\Delta D(s)} = \frac{V_g}{\left(1 - D_o\right)^2} \frac{1 - s \frac{L}{R(1 - D_o)^2}}{s^2 \frac{LC}{(1 - D_o)^2} + s \frac{L}{R(1 - D_o)^2} + 1} \quad (15)$$

A expressão encontrada para a função de transferência, derivada das Equações que expressam os valores médios das variáveis do conversor, será empregada na definição da estrutura e dos parâmetros do controlador de tensão do conversor. Como é visto na Equação 15, o circuito ressonante formado por L_r e C_r não influencia no comportamento médio do conversor.

A Tabela I apresenta os valores utilizados no projeto do conversor. O controlador implementado foi o amplificador de

Tabela I: Valores dos parâmetros utilizados no projeto do conversor

Parâmetro	Valor
V_g	10 V
R	10 Ω
L	500 uH
С	20 uF
Lr	100 nH
Cr	25,33 uF
f	100 kHz

erro compensado Tipo 2, projetado de acordo com [10], que inclui o dimensionamento de resistores e capacitores junto à escolha da frequência de cruzamento e do ângulo de fase [9], vide Tabela II.

A escolha do controlador decorreu devido a sua simplicidade e fácil aplicação, dentre as topologias de controle

Tabela II: Valores dos parâmetros do amplificador de erro compensado.

Parâmetro	Valor
R1	10 KΩ
R2	13,41 KΩ
C1	124,01 nF
C2	253,50 nF

presentes na literatura, com intuito de regular a tensão de saída do conversor apresentado, segundo o critério de estabilidade. A função de transferência do controlador é vista na Equação 16, com uma frequência de cruzamento de 116,7 Hz e um ângulo de fase de 95 graus.

$$G_c = \frac{79, 9 \cdot (s + 601, 33)}{s \cdot (s + 294, 1)} \tag{16}$$

A Figura 3 ilustra o diagrama digital do circuito implementado, as simulações do conversor com o controle aplicado foram realizadas no *software* PSIM[®].

Figura 3: Diagrama de Controle do Circuito Implementado.

III. RESULTADOS OBTIDOS PARA SIMULAÇÃO DE GANHO, Indutância Mínima e Efeitos da Ressonância

As simulações de ganho em malha aberta foram realizadas para o conversor da Figura 1 com os parâmetros descritos na Tabela I. Primeiramente, simulou-se com a fonte na polaridade positiva, posteriormente, esta foi invertida. O procedimento foi realizado para cinco valores distintos de ciclo de trabalho, que apresentou os resultados simulados contidos na Tabela III.

Tabela III: Resultados da simulação de ganho

Polaridade de Vg	D	Vo (V)	Vo teórico (V)	erro (%)
	0,3	14,01	14,28	1,89
	0,4	16,58	16,67	0,54
Positiva	0,5	19,91	20	0,45
	0,6	24,84	25	0,64
	0,7	32,96	33,33	1,11
	0,3	14,17	14,28	0,77
	0,4	16,61	16,67	0,36
Negativa	0,5	19,91	20	0,45
-	0,6	24,84	25	0,64
	0,7	32,96	33,33	1,11

Analisando a Tabela III, percebeu-se que a tensão de saída se mantém praticamente a mesma em relação à polaridade da fonte, ou seja, sendo positiva ou negativa, a polaridade da tensão de saída se mantém positiva, variando seu nível em função apenas de D.

Considerando D = 0, 5, pois é o valor que apresenta menor erro em porcentagem, a tensão no capacitor apresentou uma ondulação de 2,46 %, com valor máximo de 20,15 V, mínimo de 19,66 V e médio de 19,91 V; a corrente no indutor obteve uma variação de 2,51%, com valor máximo de 4,03 A, mínimo de 3,93 A e médio de 3,98 A.

A partir dos valores apresentados, é possível classificar o comportamento do conversor como elevador de tensão com fórmula de ganho estático equivalente ao conversor *boost* convencional [7], vide Eq. (17).

$$G = \frac{V_o}{V_g} = \frac{1}{(1-D)}$$
(17)

O conversor para uma indutância mínima (L) de 6,25 uH obtida através da Equação (18), opera no limiar dos modos de condução contínua e descontínua, ou seja a cada período de chaveamento a energia armazenada no indutor se esgota. Assim no fim do ciclo de magnetização a corrente é igual a zero, como ilustrado na Figura 4 que conta no período em que a fonte encontra-se polarizada positivamente.

$$L_{min} = \frac{DT(1-D)^2 R}{2}$$
(18)

Figura 4: Forma de onda da corrente do indutor $(L_{min} = 6, 25uH)$ para fonte de entrada com polaridade positiva.

A Figura 5 corresponde a corrente no indutor quando a fonte opera com polaridade negativa.

Figura 5: Forma de onda da corrente do indutor $(L_{min} = 6, 25uH)$ para fonte de entrada com polaridade negativa.

Logo, qualquer valor de indutância (L) superior à 6,25 uH, o conversor operará no modo de condução contínuo, justificando o uso do valor adotado de 500 uH visto na Tabela I.

Com relação ao circuito ressonante verificou-se o funcionamento, novamente, para D=0,5, neste o efeito da ressonância é perceptível na corrente em L_r e na tensão de C_r , que estão mostradas na Figura 6. Tanto a corrente através de L_r como a tensão sobre C_r obtiveram comportamento semelhante ao exposto na teoria do artigo [7]. Isso porque o chaveamento do conversor ocorre no momento em que a senoide atinge o valor zero. Esse comportamento é o ideal para a operação do conversor, já que a corrente do indutor ressonante tem valor zero no instante de inversão de sentido.

Figura 6: Forma de onda da corrente em Lr e tensão em Cr com D = 0.5.

Essa pequena diferença é adicionada na relação de ganho do conversor e, por esse motivo, a tensão de saída do conversor apresenta erros maiores para ciclos de trabalho distantes de 0,5, como retratado na Tabela III.

IV. RESULTADOS DO CONTROLE DE TENSÃO NA CARGA

Nesta seção é analisado o sistema de controle em malha fechada no conversor, simulando a entrada com polaridade positiva e negativa, com tensão de referência igual a 20 V. O intuito da simulação é testar a eficácia do controlador para quaisquer valores de V_g , que serão considerados como pertubações ou oscilações.

Analisando o período transitório do sistema, vide a Figura 7, determinou-se os parâmetros de sobre-sinal máximo percentual M_p ("overshoot"), tempo do primeiro pico t_p , tempo de subida t_r e tempo de acomodação t_a , mostrados na Tabela IV.

Figura 7: Forma de Onda de V_o para 20 V de referência.

Durante o funcionamento do conversor sem o controle de erro compensado tipo 2, ou seja, em malha aberta, foi aplicado

Tabela IV: Parâmetros do transitório de partida.

Parâmetro	valor
M_p	23,4 %
t_p	0,72 ms
t_r	0,5 ms
t_a	1,5 ms

um degrau na entrada, que muda o valor de V_g de 10 V para 13 V, considerando inicialmente uma fonte de polaridade positiva, durante a operação em regime permanente. A forma de onda ilustrado na Figura 8, mostra uma elevação na tensão de saída de 20 V para 26 V. No caso da aplicação de um degrau negativo de 3V, ocorreu um afundamento de tensão de 20V para 14 V, vide Figura 9.

Figura 8: Resposta da tensão na saída: sem controlador aplicando um degrau de 3 V na entrada positiva

Figura 9: Resposta da tensão na saída: sem controlador aplicando um degrau de -3 V na entrada positiva

Com isso o sistema precisa de um controle que ajuste a tensão de saída para o valor de referência. A Figura 10 ilustra a atuação do controlador para um degrau de 3V no instante de 50ms de simulação.

A aplicação de um degrau negativo de 3V no sistema com controle de erro compensado tipo 2, apresentou uma resposta na saída vista na Figura 11.

Alterando a polaridade da fonte de entrada, retirando o controlador e aplicando o degrau, a saída fica igualmente representada como visto nas Figuras 8 e 9, isto é, com elevação e afundamento de tensão, sem conseguir manter o valor de referência requerido.

Figura 10: Resposta da tensão na saída: com controlador, aplicando um degrau de 3 V na entrada positiva.

Figura 11: Resposta da tensão na saída: com controlador, aplicando um degrau de -3 V na entrada positiva.

Com a inserção do controle para um degrau de +3V, ou seja, de -10V a tensão passa a ser a -7V, a saída aferida foi de acordo com a forma de onda vista na Figura 12.

Figura 12: Resposta da tensão na saída: com controlador, aplicando um degrau de 3 V na entrada negativa.

Para um degrau negativo de -3V, a tensão V_g fica igual a -13 V, com a atuação do controle o mesmo acompanha a referência conforme visto na Figura 13.

A Figura 14 ilustra a evolução do ciclo de trabalho (D) durante a atuação do controlador, este que foi reduzido de 0,5 para 0,36 em 20ms, para uma entrada V_g com valor absoluto de 13 V.

A Figura 15 evidencia a evolução do ciclo de trabalho para um valor absoluto na entrada de 7 V. Percebeu-se um aumento no valor do D de 0,5 para 0,65 em 20ms.

Figura 13: Resposta da tensão na saída: com controlador,

aplicando um degrau de -3 V na entrada negativa.

Figura 14: Evolução do ciclo de trabalho $|V_g| = 13V$.

0.06

Tempo (s)

0.065

0.075

0.07

0.5

0.045

0.05

Figura 15: Evolução do ciclo de trabalho $|V_g| = 7V$.

Com isso é demonstrado que controlador atuou como se esperava, ajustando o valor de D de acordo com a entrada, para manter o valor da saída igual ao da referência. O ciclo de trabalho é gerado a partir da comparação entre o erro da saída do compensador e uma onda triangular de amplitude fixa. Logo, as Figuras 14 e 15 também descrevem o comportamento do erro gerado no compensador.

0.055

V. CONCLUSÃO

O trabalho apresentou a análise de um conversor *cc-cc* com bipolaridade da fonte, demonstrando que a topologia abordada conseguia realizar a conversão *cc-cc* em ambas as situações, mantendo a tensão de carga em um único sentido.

A realização da modelagem do conversor utilizando o modelo médio em espaço de estados consistiu na obtenção e no desenvolvimento de equações diferencias que descreviam o comportamento dinâmico do circuito. A partir dessas equações, encontrou-se a função de transferência que relaciona a resposta da tensão de carga em relação às variações do ciclo de trabalho da chave.

Para realizar o controle da tensão de saída do conversor, realimentou-se o sistema com uma malha formada por um compensador de erro e um modulador de largura de pulso alimentado por uma onda triangular. Um amplificador de erro Tipo 2 foi utilizado nesse controlador, por ser um circuito formado por elementos básicos, como resistores e capacitores, capaz de gerar um sinal erro na sua saída a partir da comparação a uma referência na entrada.

A fim de validar as equações teóricas obtidas e comprovar a eficácia do controlador projetado, realizou-se simulações de ganho, do limite de operação no MCC, dos efeitos da ressonância e do controle da tensão de carga. Com isso, conseguiu-se validar as relações entre tensão de entrada e saída além de demonstrar a perfeita atuação do controle proposto.

Por fim, vale ressaltar que os resultados obtidos a partir das simulações foram claros e objetivos e apontaram para a validação das hipóteses levantadas durante a pesquisa. Afinal, o conversor agiu conforme as equações previstas e o controle proposto atuou da forma desejada.

AGRADECIMENTOS

Os autores gostariam de agradecer a Universidade Federal do Piauí - UFPI e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, pelo apoio durante a pesquisa.

REFERÊNCIAS

- M. H Rashid. Eletrônica de potência : circuitos, dispositivos e aplicações. São Paulo: Makron Books, 1999.
- [2] D. Gerardi Conversor CC-CC para Aplicações com elevada tensão de entrada e alta potência. Dissertação (Mestrado) — Universidade Federal de Santa Catarina, Florianópolis, 2002.
- [3] A. A. M. Bento. Estudo das técnicas de controle de carga em conversores monofásicos para correção de fator de potência. Dissertação (Mestrado) — Universidade Federal de Campina Grande, Campina Grande, 2005.
- [4] Paulo P. Praça, Diego B. S. Alves, Demercil S. Oliveira Jr, Luan C. S. Mazza, Luiz H. S. Barreto. Conversor CC-CC bidirecional de três portas, estágio único e alto ganho de tensão para aplicações em sistemas fotovoltaicos. Eletrôn. Potên., Campo Grande,v. 22, n. 3, p. 258-268, 2017.
- [5] M. J. Tiburski. Técnicas para otimizaçãode conversores da família Boost com alto ganho de tensão e alto rendimento aplicados à celula combustível. Dissertação (mestrado) - Universidade Federal de Santa Maria, Santa Maria, 2019.
- [6] S. Cuk. Modelling, analysis and design of switching converters. Tese (Doutorado) — California Institute of Technology, Pasadena, 1977.
- S. Cuk. True Bridgeless pfc converter achives over 98% Efficiency, 0.999 Power Factor. Power Electronics Technology Magazine, p. 10–18, 2010.
- [8] I. Barbi. Modelagem de conversores CC-CC empregendo modelo médio em espaço de estados. Florianópoles: [s.n.], 2014.
- [9] D. W. Hart. Eletrônica de potência : análise e projeto de circuitos. Porto Alegre: AMGH, 2012.
- [10] V. H. Dean. The K factor: A new mathematical tool for stability analysis and synthesis. Powercon10. San Diego, CA. 1983.