# Use of a Boost-Forward DC-DC Voltage Source to Feed a Four-Level Flying Capacitor Inverter

Antonio Venâncio de M. Lacerda Filho\*, Ronnan de B. Cardoso\*, Edison R. C. da Silva\*<sup>†</sup>

Andre E. L. da Costa<sup>†</sup> and Darlan A. Fernandes<sup>\*</sup>

\*Post-Graduate Program in Electrical Engineering – PPGEE – LOSE – CEAR

Federal University of Paraíba - UFPB, João Pessoa - PB, Brazil

<sup>†</sup>Post-Graduate Program in Electrical Engineering – PPGEE – COPELE – LEIAM

Federal University of Campina Grande, UFCG - PB, Brazil

e-mail: antonio.lacerda@cear.ufpb.br, ronnan.cardoso@cear.ufpb.br, ercdasilva@gmail.com

andre.lucenadacosta@gmail.com, darlan@cear.ufpb.br

*Abstract*—This paper investigates the possibility of operation of four-level flying capacitor inverter obtained from a three-level flying capacitor structure in which the flying capacitor is replaced by a boost/forward DC-DC voltage source of adequate fixed value. The regulation of the flying capacitor is easily obtained in open loop without any complicated PWM strategy. Also, the theoretical studies are validated by simulated and experimental results. Comparative studies show that the solution is not so advantageous for the four level structure.

*Keywords* – Multi-level inverter, four-level inverter, flying capacitor inverter, DC-DC converter-fed inverter, DC-DC hybrid converter.

# I. INTRODUCTION

The most well known multilevel topologies are the Full-Bridge Cascade (FBC) [1], [2], the Neutral Point Clamped (NPC) [3], [4], and the Floating Capacitor (FC) [5], [6] ones. While the H-bridge allows for obtaining three levels, the most basic FBC is constituted by two cascaded full-bridges (eight switches) individually fed by isolated sources providing five levels (5L). In case of NPC and FC, higher level topologies can be obtained as an extension of the well-known three-level ones. The conventional four-level (4L) structures for FC and NPC employ six main power switches. In case of NPC six additional clamping diodes (considering that they are cascaded to block higher voltage); similar, in case of FC three additional capacitors are requested (considering that they are cascaded to block higher voltage, and excluding those of the DC-bus). This not only increases cost but also the control complexity for regulating the voltages of either the NPC DC-bus capacitors or the FC DC-bus capacitors and flying capacitors.

Figure 1(a) shows the single-phase four-level conventional FC (4L-CFC) topology, in which the DC-bus voltage is  $2V_i$  while the capacitor voltages are  $2V_i/3$  and  $V_i/2$ . However, the number of flying capacitors may be reduced by adequate regulation of the capacitor voltage value in the three-level structure shown in Fig. 1(b) [7]. Table I indicates its possible states of operation as a function of the floating capacitor voltage  $v_{C1}$ . It can be seen that when the value of the floating capacitor voltage is different from  $V_i$ , four levels are obtained.



TABLE I STATE OF OPERATION.

| State | $S_{a1}$ | $S_{a2}$ | $S_{a3}$ | $S_{a4}$ | $v_{A0}$       | $v_{C1} = \frac{V_i}{2}$ | $v_{C1} = \frac{V_i}{3}$ |
|-------|----------|----------|----------|----------|----------------|--------------------------|--------------------------|
| 1     | 1        | 1        | 0        | 0        | $V_i$          | $V_i$                    | $V_i$                    |
| 2     | 1        | 0        | 1        | 0        | $V_i - v_{C1}$ | $V_i/2$                  | $V_i/3$                  |
| 3     | 0        | 1        | 0        | 1        | $-V_i+v_{C1}$  | $-V_i/2$                 | $-V_{i}/3$               |
| 4     | 0        | 0        | 1        | 1        | $-V_i$         | $-V_i$                   | $-V_i$                   |

Considering that  $2V_i$  is the DC-link voltage, the specific cases  $v_{C1} = V_i/2$  and  $v_{C1} = V_i/3$  are indicated in both Table I and Fig. 1(b). The capacitor voltages regulation in Fig. 1(a) are obtained by PWM control [8]. However, in order to avoid PWM control complexity it is possible to use a fixed DC-source or a DC-DC converter instead of a capacitor  $C_1$  in Fig. 1(b) [7].

On the other hand, there are different voltage DC-DC converter topologies that can step-up the voltage generate by sources as PV arrays [9], [10], [11]. Some of them have been used to supply inverters as shown in [12] and [13]. In this regard, an interesting issue applied to FC inverters is the use of the combined boost/flyback converter topology introduced in [14]. In that topology, two isolated voltage outputs are available: step-up for feeding the DC-bus; and step-down for regulating the voltage value of the floating capacitor. However, high gain can be also obtained from the combined boost/forward converter [15].

This paper investigates the possibility of obtaining a four

level inverter topology with the help of such a step-up voltage gain DC-DC boost-forward converter with dual output using single power stage that imposes a fixed flying capacitor voltage. Regulation of this floating source is easily obtained without any complicated PWM strategy. In order to see the feasibility of its application it is compared to the four-level conventional FC inverter with the capacitor voltages regulated with PWM.

The paper is organized as follows: Section II describes operating principles of the proposed four-level combined converter; Section III discusses its modulation strategy and provides design considerations for the topology; Section IV gives the simulation verification; Section V presents the experimental results; in Section VI comments are given; finally conclusion is presented in Section VII.

# II. THE PROPOSED FOUR-LEVEL COMBINED CONVERTER

The use of a DC-DC boost-forward converter (BFdC) to feed the flying capacitor results in the proposed converter in Fig 2. The boost-forward (BF) part of the proposed converter was idealized from the union of a rearranged buck-boost converter [16] and a forward converter. As shown in Fig 2, such arrangement evidences the utilization of voltage  $v_o = V_i + v_{C2}$ as DC-link voltage while providing a neutral point access. This part is constituted of three diodes, D,  $D_1$  and  $D_2$ , three switches, S,  $S_1$  and  $S_2$ , a high-frequency transformer and two output capacitors,  $C_1$  and  $C_2$ . Switches connected in anti-parallel with diodes  $D_1$  and  $D_2$  guarantee the floating capacitor voltage regulation at the desired value.



Fig. 2. Proposed combined 4L-BFd-FC converter.

The operation frequency of the BFdC is higher than that of the power inverter itself. When considered in separate that converter has two modes of operation: one when switch S is on (Mode A) and the other when it is off (Mode B). Then for each operation state of the inverter, as indicated in Table I, two modes of the DC-DC converter do occur. As a result there are sixteen modes of operation for the combined converter. However, only eight of them, corresponding to the positive load current half-cycle, are presented in Fig. 3 and Table II.

## A. Considerations on the Boost-Forward Converter

Before considering these eight modes of Table II, a description of the two DC-DC converter modes will be given. *Mode A* is shown in figures 3(a), 3(c), 3(e) and 3(g), while *Mode B*, is shown in figures 3(b), 3(d), 3(f) and 3(h). In the following description, the coupled inductor is modeled as an ideal transformer, which consists of a turn ratio of 1/n and a



Fig. 3. Modes of operation of the 4L-BFd-FC.

TABLE II MODES OF OPERATION.

|       | DC-DC Converter |   |       | Inverter |          |          |          |          |                |
|-------|-----------------|---|-------|----------|----------|----------|----------|----------|----------------|
| State | S               | D | $S_1$ | $S_2$    | $S_{a1}$ | $S_{a2}$ | $S_{a3}$ | $S_{a4}$ | $v_{A0}$       |
| 1A    | 1               | 0 | 1     | 0        | 1        | 1        | 0        | 0        | $V_i$          |
| 1B    | 0               | 1 | 0     | 1        | 1        | 1        | 0        | 0        | $V_i$          |
| 2A    | 1               | 0 | 1     | 0        | 1        | 0        | 1        | 0        | $V_i - v_{C1}$ |
| 2B    | 0               | 1 | 0     | 1        | 1        | 0        | 1        | 0        | $V_i - v_{C1}$ |
| 3A    | 1               | 0 | 1     | 0        | 0        | 1        | 0        | 1        | $-V_i+v_{C1}$  |
| 3b    | 0               | 1 | 0     | 1        | 0        | 1        | 0        | 1        | $-V_i+v_{C1}$  |
| 4A    | 1               | 0 | 1     | 0        | 0        | 0        | 1        | 1        | $-V_i$         |
| 4B    | 0               | 1 | 0     | 1        | 0        | 0        | 1        | 1        | $-V_i$         |

magnetizing inductor  $L_m$ . It is considered that its operation, and also that of the output inductor filter, is in the continuous mode (CCM). In addition, all components are considered to be ideal. The typical waveforms of the DC-DC converter are illustrated in Fig. 4, for CCM operation and positive  $i_{Lo}$ current.

• Mode A  $[0 < t < DT_s]$ 

This mode is shown in the DC-DC converter part of Fig. 3(a), for instance. At instant  $t_0$  switch S is turned on and energy is transferred to the transformer secondary from the voltage source. During this time interval diodes D and  $D_2$  are reverse-biased, diode  $D_1$  is on and switch  $S_1$  is turned on. Conduction of either  $D_1$  or  $S_1$  depends on the condition of



Fig. 4. Typical waveforms of the DC-DC converter

capacitor  $C_1$  that, in turn, also depends on the inverter modes. At the same time the magnetizing current increases (see Fig. 4) and reaches its peak value at instant  $DT_s$ . Same for  $i_S$  and for the secondary current,  $i_{Ts}$ . Capacitor  $C_2$  together with the voltage source  $V_i$  supplies energy to the DC-link. Equations for *Mode A*, are:

$$\frac{di_{Lm}}{dt} = \frac{V_i}{L_m} \qquad \frac{di_{Lo}}{dt} = \frac{nV_i - V_{C1}}{L_o} \tag{1}$$

$$\frac{dV_{C1}}{dt} = \frac{i_{Lo} - i_a}{C_1} \qquad \frac{dV_{C2}}{dt} = \frac{-i_a}{C_2}$$

In these equations  $i_a$  is the phase current. It will be seen that in certain modes the load current will not circulate in the capacitor. In these cases, current  $i_a$  is eliminated from the equation to calculate  $v_{C1}$ .

• Mode B  $[DT_s < t < T_s]$ 

At instant  $DT_s$ , switch S is turned off and diodes D and  $D_2$  or  $S_2$  start to conduct. The equivalent circuit is shown in part of Fig. 3(b). In this interval the currents in inductors  $L_m$  and  $L_o$  decrease. The current in  $L_o$  flows through  $D_2$  ( $S_2$ ) and charges (discharges) capacitor  $C_1$ . Capacitor  $C_2$  charges with the energy transferred from  $L_m$ . Equations for this interval are:

$$\frac{di_{Lm}}{dt} = \frac{-V_i}{L_m} \qquad \frac{di_{Lo}}{dt} = \frac{-V_{C1}}{L_o} \tag{2}$$
$$\frac{dV_{C1}}{dt} = \frac{i_{Lo} - i_a}{C_1} \qquad \frac{dV_{C2}}{dt} = \frac{i_{Lm} - i_a}{C_2}$$

There are modes the load current will not circulate in the capacitor. In these cases, current  $i_a$  is eliminated from the equation to calculate  $v_{C1}$ .

In fact, in these modes current  $i_{Lo}$  can be either positive (with  $D_1$  conducting) or negative (with  $S_1$  conducting), depending on the current imposed by the inverter.

The static gain is obtained through the energy balance in the magnetizing inductance with the help of Fig. 4. That is,

$$\frac{V_{C2}}{V_i} = \frac{D}{(1-D)}; \quad \frac{V_{C1}}{V_i} = nD; \quad \frac{V_o}{V_i} = \frac{1}{(1-D)}$$
(3)

The gain corresponding to (3) is depicted in Fig. 5 when n = 1.

For D = 0.5, the DC-bus voltage is  $2V_i$  and the flying capacitor voltage is  $V_i/2$ . These conditions are maintained for D = 0.5 even when winding resistances  $r_{e1}$  and  $r_{e2}$  in the



Fig. 5. Converter static gains.

coupled inductor, on-state equivalent resistances  $r_{e1}$  and  $r_{e2}$  of paralleled diodes  $D_1/S_1$  and  $D_2/S_2$ , and on-state resistance  $r_{DS}(on)$  of the power switch are considered.

#### B. Modes of Operation of the Combined Converter

It has been shown above that operation of the DC-DC converter with D = 0.5 and n = 1 allows conditions so that the inverter can deliver four-level voltage at the phase output. The flow of energy in the DC-DC converter, that is, the conduction of  $D_1$ ,  $S_1$ ,  $D_2$ , and  $S_2$  is mostly defined by *Modes 2A*, *2B*, *3A* and *3B*. Operation modes of the integrated converter will be now described.

Mode IA – In this mode S,  $S_{a1}$  and  $S_{a2}$  are conducting ( $S_{a3}$  and  $S_{a4}$  are off) while the transformer secondary transfers energy from the voltage source. As in Mode A, diodes  $D_2$ and D are reverse-biased, diode  $D_1$  is on and  $S_2$  is off. The voltage applied to the phase output is  $V_{C2} = +V_i$ . Capacitor  $C_1$  can be considered to be approximately with voltage  $V_i/2$ . Mode  $IB - S_{a1}$  and  $S_{a2}$  continue conducting but S is turned off and diodes  $D_2$  and D start to conduct. As in Mode B, switch  $S_2$  is turned on in synchronism with S opening. Conduction of either  $D_2$  or  $S_2$  depends on the direction of the current in  $L_o$ . The energy stored in the magnetizing inductance at the end of the first mode is transferred to capacitors  $C_2$ . The phase output is also  $V_{C2} = +V_i$ . In this interval the energy in  $L_o$  charges  $C_1$ .  $S_2$  and  $S_1$  in next mode help to regulate the voltage.

Mode 2A – During this stage  $S_{a2}$  is turned off,  $S_{a1}$  continues conducting and  $S_{a3}$  is turned on. S is conducting and so is the transformer secondary. Behavior of the DC-DC converter is the same as in Mode A. The ideal voltage applied to the phase output is  $V_{C2} = +V_i - V_i/2 = +V_i/2$ . In this mode the capacitor current is composed by current  $i_a$ , circulating via  $S_{a1}$ , and by current  $i_{Lo}$ . Conduction of  $S_1$  helps the capacitor voltage regulation so that the secondary current  $i_{Ts}$ can circulate by either  $D_1$  or  $S_1$ . This depends on the direction of current  $i_{Lo}$ .

*Mode* 2B – In this mode,  $S_{a2}$  continues to be *off* while  $S_{a3}$  is *on*, as in *Mode* 2A, but *S* is turned *off*. Operation of the BFdC is as in *Mode B*. The phase output is also  $+V_i/2$ . In this interval the capacitor voltage regulation is obtained grace to  $S_2$ . Depending on its direction current  $i_{Lo}$  can circulate by either  $D_2$  or  $S_2$ .

*Mode* 3A – In this mode  $S_{a3}$  is turned *off*,  $S_{a4}$  continues conducting after  $S_{a2}$  is turned *on*. S is conducting and so

is the transformer secondary. Diodes  $D_2$  and D are reversebiased and switch  $S_2$  is off as in Mode A. The voltage applied to the phase output is  $V_{C2} = -V_i + V_i/2 = -V_i/2$ . Discussion on the current  $i_{Lo}$  behavior is similar to that in Mode 2A.

Mode 3B – As in Mode 3A,  $S_{a3}$  is off, and  $S_{a4}$  and  $S_{a2}$  are on but S is turned off. As in Mode 1B, the energy stored in the magnetizing inductance at the end of the first mode is transferred to capacitor  $C_1$  via diode  $D_1$ , which is turned on, and to capacitor  $C_2$  via D. Phase output is also  $-V_i/2$ . Discussion on current  $i_{Lo}$  behavior is similar to that in Mode 2B.

Mode 4A – During this interval,  $S_{a1}$  and  $S_{a2}$  are off while  $S_{a3}$  continues to be on and  $S_{a4}$  is turned on. As in Mode IB S is on while  $D_1$  is conducting and  $S_1$  turned on. The transformer is energized and the voltage applied to the phase output is  $-V_i$ .

Mode 4B – During this stage, the inverter operates as in Mode 4A, that is,  $S_{a1}$  are  $S_{a2}$  off,  $S_{a3}$  and  $S_{a4}$  are on, S is off while  $D_2$  is conducting and  $S_2$  turned on, as in Mode 1B. Phase output is also  $-V_i$ .

## C. Design Methodology

The value of D is chosen from Fig. 5 and the load current, secondary filter inductor current and magnetizing current are calculated from power specification. Inductances and capacitances are calculated from respective voltage ripple and current specifications. For instance, the flying capacitance can be calculated as a function of the peak current and the voltage variation from [17].

$$C_1 = \frac{I_{pk}}{2\,\Delta V_{C1}\,f_s\,m}\tag{4}$$

in which  $I_{pk}$  is the peak current and m is the modulation index. Semiconductors are specified from *rms* and average values.

## **III. MODULATION STRATEGY**

The pulse pattern, as shown in Fig. 6, can be obtained from a carrier-based PWM strategy for  $v_{C1} = V_i/2$ .



Fig. 6. Pulse pattern.

Three triangular carriers are level-shifted in-phase disposition (IPD PWM). Intersection of the modulating signal with each of the carriers from the top to the bottom generates pulses to  $S_{a1}$ ,  $S_{a4}$ ,  $S_{a2}$  and  $S_{a3}$ . It is worth mentioning that switches  $S_{a1}$  is complementary to  $S_{a4}$  and  $S_{a2}$  to  $S_{a3}$ . Regulation of  $v_{C1}$  around  $V_i/2$  is obtained by maintaining the duty cycle of switch S at D = 0.5. For relation 1:3 the carriers in Fig. 6 have all the same amplitude.

# **IV. SIMULATION RESULTS**

The topology of Fig. 2 was simulated with the help of PSIM for voltages  $V_{C1} = 75$  V and a DC-bus voltage  $V_0 = 300$  V, from a DC voltage source,  $V_i$ , of 150 V. A duty cycle D = 0.5 was employed in the DC-DC converter what allows continuous conduction mode of operation. In order to reduce the transformer volume, the converter was operated at 40 kHz. A R-L circuit composed the load:  $R_{load} = 16 \Omega$ ;  $L_{load} = 7$  mH. Design specifications and parameters are given in Table III and Table IV.

TABLE III DESIGN SPECIFICATION.

| Specification                     | Symbol          | Value          |
|-----------------------------------|-----------------|----------------|
| Ouput power of output 1           | $P_{01}$        | 290 W          |
| Inverter ouput power              | $P_0$           | 450 W          |
| Current ripple in $L_m$           | $\Delta i_{Lm}$ | $0.1i_{Lm}$    |
| Current ripple in $L_o$           | $\Delta i_{Lo}$ | $0.1i_{L0}$    |
| Maximal voltage ripple in $C_1$   | $\Delta V_{C1}$ | $0.0125V_{C1}$ |
| Maximal voltage ripple in $C_2$   | $\Delta V_{C2}$ | $0.0125V_{C2}$ |
| DC converter Modulation frequency | $f_s$           | 40 kHz         |
| Duty-cycle                        | D               | 0.5            |
| Inverter modulation frequency     | $f_0$           | 10 kHz         |

TABLE IV Converter Parameters.

| Specification            | Symbol            | Value   |
|--------------------------|-------------------|---------|
| Winding ratio 1          | n                 | 1       |
| Magnetizing inductance   | $L_m$             | 4.3 mH  |
| Output filter inductance | $L_o$             | 2 mH    |
| Floating capacitance     | $C_1$             | 2200 µF |
| DC-bus capacitance       | $C_2$             | 2200 µF |
| Load resistance          | $R_{Load}$        | 16 Ω    |
| Load inductance          | L <sub>Load</sub> | 7 mH    |

Figure 7 shows the output voltage (top) and load current (bottom). Better THD results can be obtained when  $v_{C1} =$  $1/6V_i$ . Figure 8 show different variables for operation in the sequence of Modes 1A, 1B, 2A and 2B. From the top to the bottom: voltage  $v_{A0}$  is presented at the top (between 76 V and 150 V); next there is a detail of current  $i_{Sa1}$  ripple and the current through  $S_{a3}$  (both around 7 A); then it is seen the current flowing through switch S with a small peak value at the end of the interval (0.8 A); in the following is presented the capacitor  $C_2$  voltage, which is fed by the current of diode  $D_1$ ; in the succeeding figures it can be seen that the current in inductor  $L_o$  is negative what imposes conduction of switches  $S_1$  and  $S_2$ ; finally it is shown that capacitor  $C_1$  voltage,  $v_{C1}$ , is charged every time  $S_{a2}$  is turned off. Note that the current in D is resultant from the energy stored due to  $i_S$  and  $i_{S1}$ . Other intervals have similar behavior except in reactive intervals in which diodes  $D_1$  and  $D_2$  conducts instead of switches  $S_1$  and  $S_2$ . Figure 9 shows an interval in which the currents of the the transformer secondary,  $i_{Ts}$ , flows through either diode  $D_1$ ,  $i_{D1}$ , or switch  $S_1$ ,  $i_{S1}$ , thus affecting the transformer primary current,  $i_{Tp}$ . It can be seen from Fig. 10 that voltages  $V_{C1}$  e  $V_0$  reach the expected values of 75 V and 300 V, respectively, for an input voltage of 150 V.



Fig. 7. Output voltage and load current.



Fig. 8. Simulation results: different variables.

## V. EXPERIMENTAL RESULTS

In order to verify the feasibility of the proposed topology and its modulation strategy, a 450 VA single-phase five-level combined converter was tested using the setup shown in Fig. 11. Command signals of switches  $S_{a1}$  and  $S_{a2}$ , are shown in Fig. 12. It is shown from the top to the bottom of Fig. 13 that the combined converter is fed by a DC-link voltage of 300 V (top), obtained from an input voltage of 150 V, and a floating capacitor voltage of 75 V, as expected. Four levels have been obtained at the output voltage, thus resulting in the load current shown at the bottom of the figure. Note that the steps are not equally spaced. This is due to the relation between DC-bus and flying capacitor voltages. A relation of 1:3 equally spaces the steps.



Fig. 10. DC-bus voltage, input voltage, and floating capacitor voltage.

time (s)

# VI. COMMENTS

In the following the analyzed 4L-BFd-FC of Fig. 2 is compared with the 4L-CFC topology of Fig. 1(a) with the capacitor voltage regulated via PWM. It is considered that the 4L-CFC DC-bus is fed by the same rearranged boost converter used in the primary of the BF converter transformer. Table V establishes a comparison in terms of the number of switches, number of capacitors, number of magnetic and losses. It can be seen from Fig. 14 that losses are large in 4L-CFC with PWM regulation of the capacitor voltage (32.1 W) than in 4L-BFd-FC (27.2 W), which has the same number



Fig. 11. Experimental setup.



Fig. 12. Command signals for switches  $S_{a1}$  (top) and  $S_{a2}$  (bottom). 20 V/div.



Fig. 13. From the top to the bottom: DC-bus voltage (100 V/div); floating capacitor voltage (100 V/div); output voltage (100 V/div); load current (20 A/div).

of switches but uses an additional transformer, thus increasing cost. In this investigation the use of either 4L-CFC or 4L-BFd-FC topologies seems to become a question of choice between cost and losses. However, cost calculation needs to be a accomplished for real conclusion. Also, other figures of merit should be examined for a final choice.

TABLE V Comparison between 4L topologies.

|                     | 4L-BFd-FC | 4L-CFC  |
|---------------------|-----------|---------|
| Switches            | 7         | 7       |
| Capacitors          | 2         | 3       |
| Reactor             | 2         | 1       |
| HF Transformer      | 1         | 0       |
| Total Losses/27.2 W | 1 pu      | 1.18 pu |



Fig. 14. Losses comparison.

#### VII. CONCLUSIONS

This paper investigated the use of a DC-DC high gain hybrid boost/forward converter to feed a single-phase FC inverter. The boost/forward converter employs only one winding and a single switch. Two of three its outputs were used, one to feed the DC-bus voltage and the other isolated one to regulate the flying capacitor voltage with a value different from half of the DC-link voltage, thus producing a four level voltage output. Simulation results are presented and verified by experimental results. Although the 4L-BFd-FC losses have been shown to be smaller than in case of the conventional 4L-FC inverter, its cost should be reduced so that become competitive.

#### ACKNOWLEDGMENT

Authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), from Brazil, for funding this investigation.

#### REFERENCES

- R. H. Baker and L. H. Bannister, "Electric Power Converter," Feb. 18 1975, United States Patent 3,867,643.
- [2] M. Marchesoni, M. Mazzucchelli, and S. Tenconi, "A non conventional power converter for plasma stabilization," *Proc. of PESC'88*, pp. 212– 219, 1988.
- [3] G. S. Zinoviev and N. N. Lopatkin, "Evolution of multilevel voltage source inverters," in 9th International Conference on Actual Problems of Electronic Instrument Engineering, vol. 1, 2008, pp. 125–136.
- [4] A. Nabae, I. Takahashi, and H. Akagi, "A new neutral-point-clamped PWM inverter," *IEEE Transactions on Industry Applications*, no. 5, pp. 518–523, 1981.
- [5] H. Sugimoto, "New PWM control method for a three-level inverter," 1982, 80260 (Japan).
- [6] T. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," in *PESC'92 Record. 23rd Annual IEEE Power Electronics Specialists Conference*, 1992, pp. 397–403.
- [7] X. Kou, K. A. Corzine, and Y. L. Familiant, "Full binary combination schema for floating voltage source multi-level inverters," in *IEEE Industry Applications Conference. 37th IAS Annual Meeting*, vol. 4, 2002, pp. 2398–2404.
- [8] J. Huang and K. A. Corzine, "Extended operation of flying capacitor multilevel inverters," *IEEE Transactions on Power Electronics*, vol. 21, no. 1, pp. 140–147, 2006.
- [9] D.-Y. Lee, I. Choy, and D.-S. Hyun, "A new pwm DC/DC converter with isolated dual output using single power stage," in *IEEE Industry Applications Conference. 36th IAS Annual Meeting*, vol. 3, 2001, pp. 1889–1895.
- [10] T.-J. Liang and K. Tseng, "Analysis of integrated boost-flyback stepup converter," *IEE Proceedings-Electric Power Applications*, vol. 152, no. 2, pp. 217–225, 2005.
- [11] J. R. Dreher, F. Marangoni, J. L. Ortiz, M. L. d. S. Martins, H. T. Camara, and L. D. Flora, "High step-up voltage gain integrated DC/DC converters," in *IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)*, 2012, pp. 125–132.
- [12] A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, "Multi-output DC–DC converters based on diode-clamped converters configuration: topology and control strategy," *IET power electronics*, vol. 3, no. 2, pp. 197–208, 2010.
- [13] J. C. Rosas-Caro, J. M. Ramírez, and P. M. García-Vite, "Novel DC– DC multilevel boost converter," in *IEEE Power Electronics Specialists Conference*, 2008, pp. 2146–2151.
- [14] A. S. Andrade and E. R. da Silva, "DC-link control of a three-level NPC inverter fed by shaded photovoltaic system," in 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), 2015, pp. 1–5.
- [15] J. C. Giacomini, P. F. Costa, A. Andrade, L. Schuch, and M. L. Martins, "Desenvolvimento de um conversor CC–CC boost-forward integrado para aplicações com elevado ganho de tensão," *Eletrônica de Potência*, vol. 22, no. 2, pp. 206–214, 2017.
- [16] F. Z. Peng, L. M. Tolbert, and F. Khan, "Power electronics' circuit topology-the basic switching cells," in *IEEE Workshop Power Electronics Education*, 2005, pp. 52–57.
- [17] H. Wang, L. Kou, Y.-F. Liu, and P. C. Sen, "A new six-switch fivelevel active neutral point clamped inverter for pv applications," *IEEE Transactions on Power Electronics*, vol. 32, no. 9, pp. 6700–6715, 2016.